Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terrance G. Johns is active.

Publication


Featured researches published by Terrance G. Johns.


Genes & Development | 2010

Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma

Maria-del-Mar Inda; Rudy Bonavia; Akitake Mukasa; Yoshitaka Narita; Dinah Sah; Scott R. VandenBerg; Cameron Brennan; Terrance G. Johns; Robert M. Bachoo; Philipp Hadwiger; Pamela Tan; Ronald A. DePinho; Webster K. Cavenee; Frank B. Furnari

Human solid tumors frequently have pronounced heterogeneity of both neoplastic and normal cells on the histological, genetic, and gene expression levels. While current efforts are focused on understanding heterotypic interactions between tumor cells and surrounding normal cells, much less is known about the interactions between and among heterogeneous tumor cells within a neoplasm. In glioblastoma multiforme (GBM), epidermal growth factor receptor gene (EGFR) amplification and mutation (EGFRvIII/DeltaEGFR) are signature pathogenetic events that are invariably expressed in a heterogeneous manner. Strikingly, despite its greater biological activity than wild-type EGFR (wtEGFR), individual GBM tumors expressing both amplified receptors typically express wtEGFR in far greater abundance than the DeltaEGFR lesion. We hypothesized that the minor DeltaEGFR-expressing subpopulation enhances tumorigenicity of the entire tumor cell population, and thereby maintains heterogeneity of expression of the two receptor forms in different cells. Using mixtures of glioma cells as well as immortalized murine astrocytes, we demonstrate that a paracrine mechanism driven by DeltaEGFR is the primary means for recruiting wtEGFR-expressing cells into accelerated proliferation in vivo. We determined that human glioma tissues, glioma cell lines, glioma stem cells, and immortalized mouse Ink4a/Arf(-/-) astrocytes that express DeltaEGFR each also express IL-6 and/or leukemia inhibitory factor (LIF) cytokines. These cytokines activate gp130, which in turn activates wtEGFR in neighboring cells, leading to enhanced rates of tumor growth. Ablating IL-6, LIF, or gp130 uncouples this cellular cross-talk, and potently attenuates tumor growth enhancement. These findings support the view that a minor tumor cell population can potently drive accelerated growth of the entire tumor mass, and thereby actively maintain tumor cell heterogeneity within a tumor mass. Such interactions between genetically dissimilar cancer cells could provide novel points of therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors

Andrew M. Scott; Fook-Thean Lee; Niall C. Tebbutt; Rebecca A. Herbertson; Sanjeev S. Gill; Zhanqi Liu; Effie Skrinos; Carmel Murone; Timothy Saunder; Bridget Chappell; Anthony T. Papenfuss; Aurora Poon; Wendie Hopkins; Fiona E. Smyth; Duncan MacGregor; Lawrence Cher; Achim A. Jungbluth; Gerd Ritter; Martin W. Brechbiel; Roger Murphy; Antony W. Burgess; Eric W. Hoffman; Terrance G. Johns; Lloyd J. Old

An array of cell-surface antigens expressed by human cancers have been identified as targets for antibody-based therapies. The great majority of these antibodies do not have specificity for cancer but recognize antigens expressed on a range of normal cell types (differentiation antigens). Over the past two decades, our group has analyzed thousands of mouse monoclonal antibodies for cancer specificity and identified a battery of antibodies with limited representation on normal human cells. The most tumor-specific of these antibodies is 806, an antibody that detects a unique epitope on the epidermal growth factor receptor (EGFR) that is exposed only on overexpressed, mutant, or ligand-activated forms of the receptor in cancer. In vitro immunohistochemical specificity analysis shows little or no detectable 806 reactivity with normal tissues, even those with high levels of wild-type (wt)EGFR expression. Preclinical studies have demonstrated that 806 specifically targets a subset of EGFR expressed on tumor cells, and has significant anti-tumor effects on human tumor xenografts, primarily through abrogation of signaling pathways. The present clinical study was designed to examine the in vivo specificity of a chimeric form of mAb 806 (ch806) in a tumor targeting/biodistribution/pharmacokinetic analysis in patients with diverse tumor types. ch806 showed excellent targeting of tumor sites in all patients, no evidence of normal tissue uptake, and no significant toxicity. These in vitro and in vivo characteristics of ch806 distinguish it from all other antibodies targeting EGFR.


Nature Reviews Cancer | 2013

Targeting the ERBB family in cancer: couples therapy

Niall C. Tebbutt; Mikkel W. Pedersen; Terrance G. Johns

The ERBB family of receptor tyrosine kinases has a central role in the tumorigenesis of many types of solid tumour. Various therapeutics targeting these receptors have been approved for the treatment of several cancers. Considerable preclinical data have shown that the administration of two inhibitors against an individual ERBB family member — particularly epidermal growth factor receptor (EGFR) or ERBB2 — leads to markedly higher antitumour activity than the administration of single agents. This Opinion article describes the preclinical and clinical performance of these dual-targeting approaches, discusses the key mechanisms that mediate their increased efficacy and highlights areas for ongoing investigation.


International Journal of Cancer | 2002

Novel monoclonal antibody specific for the de2-7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene

Terrance G. Johns; Elisabeth Stockert; Gerd Ritter; Achim A. Jungbluth; H-J. Su Huang; Webster K. Cavenee; Fiona E. Smyth; Cathrine Hall; Nadine Watson; Edouard C. Nice; William J. Gullick; Lloyd J. Old; Antony W. Burgess; Andrew M. Scott

In some respects, the EGFR appears to be an attractive target for tumor‐targeted antibody therapy: it is overexpressed in many types of epithelial tumor and inhibition of signaling often induces an anti‐tumor effect. The use of EGFR specific antibodies, however, may be limited by uptake in organs that have high endogenous levels of the wild type EGFR such as the liver. The de2‐7 EGFR (or EGFRvIII) is a naturally occurring extracellular truncation of the EGFR found in a number of tumor types including glioma, breast, lung and prostate. Antibodies directed to this tumor specific variant of the EGFR provide an alternative targeting strategy, although the lower proportion of tumors that express the de2‐7 EGFR restricts this approach. We describe a novel monoclonal antibody (MAb 806) that potentially overcomes the difficulties associated with targeting the EGFR expressed on the surface of tumor cells. MAb 806 bound to de2‐7 EGFR transfected U87MG glioma cells (U87MG.Δ2‐7) with high affinity (∼1 × 109 M−1), but did not bind parental cells that express the wild type EGFR. Consistent with this observation, MAb 806 was unable to bind a soluble version of the wild type EGFR containing the extracellular domain. In contrast, immobilization of this extracellular domain to ELISA plates induced saturating and dose response binding of MAb 806, suggesting that MAb 806 can bind the wild type EGFR under certain conditions. MAb 806 also bound to the surface of A431 cells, which due to an amplification of the EGFR gene express large amounts of the EGFR. Interestingly, MAb 806 only recognized 10% of the total EGFR molecules expressed by A431 cells and the binding affinity was lower than that determined for the de2‐7 EGFR. MAb 806 specifically targeted U87MG.Δ2‐7 and A431 xenografts grown in nude mice with peak levels in U87MG.Δ2‐7 xenografts detected 8 h after injection. No specific targeting of parental U87MG xenografts was observed. Following binding to U87MG.Δ2‐7 cells, MAb 806 was rapidly internalized by macropinocytosis and subsequently transported to lysosomes, a process that probably contributes to the early targeting peak observed in the xenografts. Thus, MAb 806 can be used to target tumor cells containing amplification of the EGFR gene or de2‐7 EGFR but does not bind to the wild type EGFR when expressed on the cell surface.


Clinical Cancer Research | 2005

Treatment of Human Tumor Xenografts with Monoclonal Antibody 806 in Combination with a Prototypical Epidermal Growth Factor Receptor ^ Specific Antibody Generates Enhanced Antitumor Activity

Rushika M. Perera; Yoshitaka Narita; Frank Furnari; Hui K. Gan; Carmel Murone; Marika Ahlkvist; Rodney B. Luwor; Antony W. Burgess; Elisabeth Stockert; Achim A. Jungbluth; Lloyd J. Old; Webster K. Cavenee; Andrew M. Scott; Terrance G. Johns

Monoclonal antibody (mAb) 806 is a novel epidermal growth factor receptor (EGFR) antibody with significant antitumor activity that recognizes a mutant EGFR commonly expressed in glioma known as delta2-7 EGFR (de2-7 EGFR or EGFRvIII) and a subset of the wild-type (wt) EGFR found in cells that overexpress the receptor. We have used two human xenograft mouse models to examine the efficacy of mAb 806 in combination with mAb 528, a prototypical anti-EGFR antibody with similar specificity to cetuximab. Treatment of nude mice, bearing s.c. or i.c. tumor human xenografts expressing the wt or de2-7 EGFR, with mAbs 806 and 528 in combination resulted in additive and in some cases synergistic, antitumor activity. Interestingly, mAb 528 was also effective against xenografts expressing the ligand independent de2-7 EGFR when used as a single agent, showing that its antitumor activity is not merely mediated through inhibition of ligand binding. When used as single agents, neither mAbs 806 or 528 induced down-regulation of the de2-7 EGFR either in vitro or in vivo. In contrast, the combination of antibodies produced a rapid and dramatic decrease in the total cell surface de2-7 EGFR both in vitro and in xenografts. Consistent with this decrease in total cell surface de2-7 EGFR, we observed up-regulation of the cell cycle inhibitor p27KIP1 and a decrease in tumor cell proliferation as measured by Ki-67 immunostaining when the antibodies were used in combination in vivo. Thus, mAb 806 can synergize with other EGFR-specific antibodies thereby providing a rationale for its translation into the clinic.


Cancer Research | 2009

Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients

Kan V. Lu; Shaojun Zhu; Anna Nada Cvrljevic; Tiffany T. Huang; Shawn Sarkaria; David Ahkavan; Julie Dang; Eduard B. Dinca; Seema Plaisier; Isaac Oderberg; Yohan Lee; Zugen Chen; Jeremy S. Caldwell; Yongmin Xie; Joseph A. Loo; David Seligson; Arnab Chakravari; Francis Y. Lee; Roberto Weinmann; Timothy F. Cloughesy; Stanley F. Nelson; Gabriele Bergers; Thomas G. Graeber; Frank Furnari; C. David James; Webster K. Cavenee; Terrance G. Johns; Paul S. Mischel

Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR- and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression, and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples showed frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies.


FEBS Journal | 2013

The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered.

Hui K. Gan; Anna Nada Cvrljevic; Terrance G. Johns

The epidermal growth factor receptor (EGFR) is overexpressed in a variety of human epithelial tumors, often as a consequence of gene amplification. Tumors with EGFR gene amplification frequently contain EGFR gene rearrangements, with the most common extracellular domain mutation being EGFRvIII. This mutation leads to a deletion of exons 2–7 of the EGFR gene and renders the mutant receptor incapable of binding any known ligand. Despite this, EGFRvIII displays low‐level constitutive signaling that is augmented by reduced internalization and downregulation. Aberrant EGFRvIII signaling has been shown to be important in driving tumor progression and often correlates with poor prognosis. It is clear that EGFRvIII is expressed in a considerable proportion of patients with glioblastoma multiforme (GBM). The presence of EGFRvIII in other tumor types, however, remains controversial. In this review, we critically analyze the evidence for the expression of EGFRvIII in a range of tumor types and discuss recent findings pertinent to its function and biology in GBM.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis

Craig S. Clements; Hugh H. Reid; Travis Beddoe; Fleur E. Tynan; Matthew A. Perugini; Terrance G. Johns; Claude C.A. Bernard; Jamie Rossjohn

Myelin oligodendrocyte glycoprotein (MOG) is a key CNS-specific autoantigen for primary demyelination in multiple sclerosis. Although the disease-inducing role of MOG has been established, its precise function in the CNS remains obscure. To gain new insights into the physiological and immunopathological role of MOG, we determined the 1.8-Å crystal structure of the MOG extracellular domain (MOGED). MOGED adopts a classical Ig (Ig variable domain) fold that was observed to form an antiparallel head-to-tail dimer. A dimeric form of native MOG was observed, and MOGED was also shown to dimerize in solution, consistent with the view of MOG acting as a homophilic adhesion receptor. The MOG35-55 peptide, a major encephalitogenic determinant recognized by both T cells and demyelinating autoantibodies, is partly occluded within the dimer interface. The structure of this key autoantigen suggests a relationship between the dimeric form of MOG within the myelin sheath and a breakdown of immunological tolerance to MOG that is observed in multiple sclerosis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478

Terrance G. Johns; Rodney B. Luwor; Carmel Murone; Francesca Walker; Janet Weinstock; Angela Vitali; Rushika M. Perera; Achim A. Jungbluth; Elisabeth Stockert; Lloyd J. Old; Edouard C. Nice; Antony W. Burgess; Andrew M. Scott

Blockade of epidermal growth factor receptor (EGFR) signaling with specific inhibitors of the EGFR tyrosine kinase retards cellular proliferation and arrests the growth of tumor xenografts. AG1478, an inhibitor of the EGFR tyrosine kinase, is used in laboratory studies; however, its therapeutic potential has not been elucidated. Therefore, we evaluated an aqueous form of AG1478 for its antitumor activity in mice bearing human xenografts expressing the WT EGFR or a naturally occurring ligand-independent truncation of the EGFR [delta2–7 (de2–7) EGFR or EGFRvIII]. Parenteral administration of soluble AG1478 blocked phosphorylation of the EGFR at the tumor site and inhibited the growth of A431 xenografts that overexpress the WT EGFR and glioma xenografts expressing the de2–7 EGFR. Strikingly, even subtherapeutic doses of AG1478 significantly enhanced the efficacy of cytotoxic drugs, with the combination of AG1478 and temozolomide displaying synergistic antitumor activity against human glioma xenografts. AG1478 was also examined in combination with mAb 806, an anti-EGFR antibody that was raised against the de2–7 EGFR but unexpectedly also binds a subset of the EGFR expressed in cells exhibiting amplification of the EGFR gene. The combination of AG1478 and mAb 806 displayed additive, and in some cases synergistic, antitumor activity against tumor xenografts overexpressing the EGFR. Here, we demonstrate that different classes of inhibitors to the EGFR can have synergistic antitumor activity in vivo. These results establish the antitumor efficacy of the EGFR inhibitor AG1478 and provide a rationale for its clinical evaluation in combination with both chemotherapy and other EGFR therapeutics.


Advanced Healthcare Materials | 2013

Antibody-Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs

Emilie Secret; Kevin S. Smith; Valentina Dubljevic; Eli Moore; Peter J. Macardle; Mary-Louise Rogers; Terrance G. Johns; Jean-Olivier Durand; Frédérique Cunin; Nicolas H. Voelcker

We describe the preparation of biodegradable porous silicon nanoparticles (pSiNP) functionalized with cancer cell targeting antibodies and loaded with the hydrophobic anti-cancer drug camptothecin. Orientated immobilization of the antibody on the pSiNP is achieved using novel semicarbazide based bioconjugate chemistry. To demonstrate the generality of this targeting approach, the three antibodies MLR2, mAb528 and Rituximab are used, which target neuroblastoma, glioblastoma and B lymphoma cells, respectively. Successful targeting is demonstrated by means of flow cytometry and immunocytochemistry both with cell lines and primary cells. Cell viability assays after incubation with pSiNPs show selective killing of cells expressing the receptor corresponding to the antibody attached on the pSiNP.

Collaboration


Dive into the Terrance G. Johns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lloyd J. Old

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Antony W. Burgess

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sameer A. Greenall

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jacqueline F. Donoghue

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bryan W. Day

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Webster K. Cavenee

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Brett W. Stringer

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Timothy E. Adams

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge