Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terrence Michael Wright is active.

Publication


Featured researches published by Terrence Michael Wright.


The Journal of Comparative Neurology | 2006

Differential Synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats

Dinesh V. Raju; Deep J. Shah; Terrence Michael Wright; Randy A. Hall; Yoland Smith

The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2‐immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1‐containing terminals formed axospinous synapses, whereas 87% of vGluT2‐positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA‐L‐labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. J. Comp. Neurol. 499:231–243, 2006.


European Journal of Neuroscience | 2008

Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP‐treated monkey model of parkinsonism

Dinesh V. Raju; Todd H. Ahern; Deep J. Shah; Terrence Michael Wright; David G. Standaert; Randy A. Hall; Yoland Smith

Two cardinal features of Parkinsons disease (PD) pathophysiology are a loss of glutamatergic synapses paradoxically accompanied by an increased glutamatergic transmission to the striatum. The exact substrate of this increased glutamatergic drive remains unclear. The striatum receives glutamatergic inputs from the thalamus and the cerebral cortex. Using vesicular glutamate transporters (vGluTs) 1 and 2 as markers of the corticostriatal and thalamostriatal afferents, respectively, we examined changes in the synaptology and relative prevalence of striatal glutamatergic inputs in methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐treated monkeys using electron microscopic immunoperoxidase and confocal immunofluorescence methods. Our findings demonstrate that the prevalence of vGluT1‐containing terminals is significantly increased in the striatum of MPTP‐treated monkeys (51.9 ± 3.5% to 66.5 ± 3.4% total glutamatergic boutons), without any significant change in the pattern of synaptic connectivity; more than 95% of vGluT1‐immunolabeled terminals formed axo‐spinous synapses in both conditions. In contrast, the prevalence of vGluT2‐immunoreactive terminals did not change after MPTP treatment (21.7 ± 1.3% vs. 21.6 ± 1.2% total glutamatergic boutons). However, a substantial increase in the ratio of axo‐spinous to axo‐dendritic synapses formed by vGluT2‐immunoreactive terminals was found in the pre‐caudate and post‐putamen striatal regions of MPTP‐treated monkeys, suggesting a certain degree of synaptic reorganization of the thalamostriatal system in parkinsonism. About 20% of putative glutamatergic terminals did not show immunoreactivity in striatal tissue immunostained for both vGluT1 and vGluT2, suggesting the expression of another vGluT in these boutons. These findings provide striking evidence that suggests a differential degree of plasticity of the corticostriatal and thalamostriatal system in PD.


The Journal of Neuroscience | 2011

Constancy and Variability in the Output of a Central Pattern Generator

Brian J. Norris; Angela Wenning; Terrence Michael Wright; Ronald L Calabrese

Experimental and corresponding modeling studies have demonstrated a twofold to fivefold variation of intrinsic and synaptic parameters across animals, whereas functional output is maintained. These studies have led to the hypothesis that correlated, compensatory changes in particular parameters can at least partially explain the biological variability in parameters. Using the leech heartbeat central pattern generator (CPG), we selected three different segmental motor neurons that fire in a functional phase progression but receive input from the same four premotor interneurons. Previous work suggested that the phase progression arises because the pattern of relative strength of the four inputs varies systematically across the segmental motor neurons. Nevertheless, there was considerable animal-to-animal variation in the absolute strengths of these connections. We tested the hypothesis that functional output is maintained in the face of variation in the absolute strength of connections because relative strengths onto particular motor neurons are maintained. We found that relative strength is not strictly maintained across animals even as functional output is maintained, and animal-to-animal variations in relative strength of particular inputs do not correlate strongly with output phase. In parallel with this variation in synaptic strength, the firing phase of the premotor inputs to these motor neurons varies considerably across individuals. We conclude that the number (four) of inputs to each motor neuron, which each vary in strength, and the phase diversity of the temporal pattern of input from the CPG diminish the influence of individual inputs. We hypothesize that each animal arrives at a unique solution for how the network produces functional output.


Integrative and Comparative Biology | 2011

Coping with Variability in Small Neuronal Networks

Ronald L Calabrese; Brian J. Norris; Angela Wenning; Terrence Michael Wright

Experimental and corresponding modeling studies indicate that there is a 2- to 5-fold variation of intrinsic and synaptic parameters across animals while functional output is maintained. Here, we review experiments, using the heartbeat central pattern generator (CPG) in medicinal leeches, which explore the consequences of animal-to-animal variation in synaptic strength for coordinated motor output. We focus on a set of segmental heart motor neurons that all receive inhibitory synaptic input from the same four premotor interneurons. These four premotor inputs fire in a phase progression and the motor neurons also fire in a phase progression because of differences in synaptic strength profiles of the four inputs among segments. Our work tested the hypothesis that functional output is maintained in the face of animal-to-animal variation in the absolute strength of connections because relative strengths of the four inputs onto particular motor neurons is maintained across animals. Our experiments showed that relative strength is not strictly maintained across animals even as functional output is maintained, and animal-to-animal variations in strength of particular inputs do not correlate strongly with output phase. Further experiments measured the precise temporal pattern of the premotor inputs, the segmental synaptic strength profiles of their connections onto motor neurons, and the temporal pattern (phase progression) of those motor neurons all in the same animal for a series of 12 animals. The analysis of input and output in this sample of 12 individuals suggests that the number (four) of inputs to each motor neuron and the variability of the temporal pattern of input from the CPG across individuals weaken the influence of the strength of individual inputs. Moreover, the temporal pattern of the output varies as much across individuals as that of the input. Essentially, each animal arrives at a unique solution for how the network produces functional output.


Journal of Neurophysiology | 2011

Contribution of motoneuron intrinsic properties to fictive motor pattern generation

Terrence Michael Wright; Ronald L Calabrese

Previously, we reported a canonical ensemble model of the heart motoneurons that underlie heartbeat in the medicinal leech. The model motoneurons contained a minimal set of electrical intrinsic properties and received a synaptic input pattern based on measurements performed in the living system. Although the model captured the synchronous and peristaltic motor patterns observed in the living system, it did not match quantitatively the motor output observed. Because the model motoneurons had minimal intrinsic electrical properties, the mismatch between model and living system suggests a role for additional intrinsic properties in generating the motor pattern. We used the dynamic clamp to test this hypothesis. We introduced the same segmental input pattern used in the model to motoneurons isolated pharmacologically from their endogenous input in the living system. We show that, although the segmental input pattern determines the segmental phasing differences observed in motoneurons, the intrinsic properties of the motoneurons play an important role in determining their phasing, particularly when receiving the synchronous input pattern. We then used trapezoidal input waveforms to show that the intrinsic properties present in the living system promote phase advances compared with our model motoneurons. Electrical coupling between heart motoneurons also plays a role in shaping motoneuron output by synchronizing the activity of the motoneurons within a segment. These experiments provide a direct assessment of how motoneuron intrinsic properties interact with their premotor pattern of synaptic drive to produce rhythmic output.


Journal of Neurophysiology | 2008

Using a Model to Assess the Role of the Spatiotemporal Pattern of Inhibitory Input and Intrasegmental Electrical Coupling in the Intersegmental and Side-to-Side Coordination of Motor Neurons by the Leech Heartbeat Central Pattern Generator

Paul S. García; Terrence Michael Wright; Ian R. Cunningham; Ronald L Calabrese

Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.


BMC Neuroscience | 2012

Analysis of input-output relationships of CPG elements and their contributions to rhythmic output

Terrence Michael Wright; Brian Mulloney; Ronald L Calabrese

We use the dynamic clamp technique [1] to explore how synaptic input patterns affect motor output (see Figure ​Figure1A).1A). We show that leech motor neuron intrinsic properties make a contribution to their output phasing. Then, we show that leech motor neurons receiving the same complement of synaptic inputs can still be organized into a coordinated motor pattern given that a gradient of synaptic strengths exists and that the premotor interneurons fire at different times [2]. In both of these cases, measuring motor neuron responses provides a direct assay for how premotor input patterns produce stereotyped motor output. We are currently extending this analysis to the crayfish swimmeret system, a system in which four segmental oscillators are interconnected by coordinating interneurons to produce a metachronal wave of swimmeret movements [3]. In this system, ascending (ASC) and descending (DSC) coordinating interneurons (see Figure ​Figure1B)1B) encode salient features about the activity pattern of their home segment and are exported (via spikes) to other segmental oscillators. Interestingly, when the system is driven across periods by different concentrations of neuromodulators, the number of spikes of a given coordinating interneuron remains constant although their duty cycles change. We are currently building a single-compartment, conductance-based model of the ASC and DSC coordinating neurons, with the goal of understanding how these coordinating neurons encode information in their home modules and how this encoding can be modulated when the swimmeret system is driven at different periods. Figure 1 Circuit diagrams and rhythmic motor output from the leech heartbeat central pattern generator (A) and the crayfish swimmeret system (B). A, left: Heart (HE) motor neurons in segments 8 and 12 both receive synaptic input from premotor hear (HN) interneurons ...


BMC Neuroscience | 2007

Modeling the output of a central pattern generator

Ronald L Calabrese; Paul S. García; Brian J. Norris; Terrence Michael Wright

Experimental analysis in our lab has provided a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech. To begin the process of elucidating the relative roles of this pattern of input and motor neuron intrinsic properties and electrical coupling in the elaboration of the heartbeat fictive motor pattern, we constructed a conductance-based ensemble model of all the segmental heart motor neurons and their known synaptic inputs. Our focus was intersegmental and side-to-side coordination of the asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous coordination), while on the other they fire in a rear-to-front progression (peristaltic coordination). The model reproduces the general trends of the two intersegmental phase relations among motor neurons, but the match with the living system is quantitatively poor, particularly for the peristaltic coordination mode where the phase progression among the segmental motor neurons in the model is only half that observed in the living system. Thus the realistic inputs (experimentally determined) do not produce similarly realistic output in our model. Modeling experiments, indicate that the most important determinant of the intersegmental and side-to-side phase relations among the heart motor neurons in the model was the spatiotemporal pattern of synaptic inputs, yet phasing was influenced by electrical coupling between the motor neurons in each segment, intersegmental conduction delays in the premotor interneurons, intra-burst synaptic plasticity, and intrinsic membrane currents of the motor neurons. Understanding the shortcomings of the model required that we establish experimentally the precise timing of motor neuron activity in each segment with respect to CPG activity. This analysis show quantitatively how motor neurons in the model fail to fire at the appropriate time with respect to their synaptic inputs and suggest that the intrinsic properties of the model motor neuron are simplistic.


Journal of Neurophysiology | 2007

Developmental Reorganization of the Output of a GABAergic Interneuronal Circuit

Huaying Xu; Arthur Clement; Terrence Michael Wright; Peter Wenner


Journal of Neuroscience Nursing | 2011

Constancy and variability in the output of a central pattern generator

Brian J. Norris; Angela Wenning; Terrence Michael Wright; Ronald L Calabrese

Collaboration


Dive into the Terrence Michael Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinesh V. Raju

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Mulloney

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge