Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terri Goss Kinzy is active.

Publication


Featured researches published by Terri Goss Kinzy.


Nature Structural & Molecular Biology | 2005

Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology

Stephane R. Gross; Terri Goss Kinzy

The binding of eukaryotic translation elongation factor 1A (eEF1A) to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. Using the yeast Saccharomyces cerevisiae, we have established an in vivo assay that directly identifies specific regions and residues of eEF1A responsible for actin interactions and bundling. Using a unique genetic screen, we isolated a series of eEF1A mutants with reduced actin bundling activity. These mutations alter actin cytoskeleton organization but not translation, indicating that these are separate functions of eEF1A. This demonstrates for the first time a direct consequence of eEF1A on cytoskeletal organization in vivo and the physiological significance of this interaction.


Journal of Biological Chemistry | 2010

eEF1A: thinking outside the ribosome.

Maria K. Mateyak; Terri Goss Kinzy

Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.


Molecular Cell | 2000

Structural Basis for Nucleotide Exchange and Competition with tRNA in the Yeast Elongation Factor Complex eEF1A:eEF1Bα

Gregers R. Andersen; Lise Pedersen; Louis Valente; Ishita Chatterjee; Terri Goss Kinzy; Morten Kjeldgaard; Jens Nyborg

The crystal structure of a complex between the protein biosynthesis elongation factor eEF1A (formerly EF-1alpha) and the catalytic C terminus of its exchange factor, eEF1Balpha (formerly EF-1beta), was determined to 1.67 A resolution. One end of the nucleotide exchange factor is buried between the switch 1 and 2 regions of eEF1A and destroys the binding site for the Mg(2+) ion associated with the nucleotide. The second end of eEF1Balpha interacts with domain 2 of eEF1A in the region hypothesized to be involved in the binding of the CCA-aminoacyl end of the tRNA. The competition between eEF1Balpha and aminoacylated tRNA may be a central element in channeling the reactants in eukaryotic protein synthesis. The recognition of eEF1A by eEF1Balpha is very different from that observed in the prokaryotic EF-Tu:EF-Ts complex. Recognition of the switch 2 region in nucleotide exchange is, however, common to the elongation factor complexes and those of Ras:Sos and Arf1:Sec7.


Molecular and Cellular Biology | 2005

Proteasome-Mediated Degradation of Cotranslationally Damaged Proteins Involves Translation Elongation Factor 1A

Show-Mei Chuang; Li Chen; David Lambertson; Monika Anand; Terri Goss Kinzy; Kiran Madura

ABSTRACT Rad23 and Rpn10 play synergistic roles in the recognition of ubiquitinated proteins by the proteasome, and loss of both proteins causes growth and proteolytic defects. However, the physiological targets of Rad23 and Rpn10 have not been well defined. We report that rad23Δ rpn10Δ is unable to grow in the presence of translation inhibitors, and this sensitivity was suppressed by translation elongation factor 1A (eEF1A). This discovery suggested that Rad23 and Rpn10 perform a role in translation quality control. Certain inhibitors increase translation errors during protein synthesis and cause the release of truncated polypeptide chains. This effect can also be mimicked by ATP depletion. We determined that eEF1A interacted with ubiquitinated proteins and the proteasome following ATP depletion. eEF1A interacted with the proteasome subunit Rpt1, and the turnover of nascent damaged proteins was deficient in rpt1. An eEF1A mutant (eEF1AD156N) that conferred hyperresistance to translation inhibitors was much more effective at eliminating damaged proteins and was detected in proteasomes in untreated cells. We propose that eEF1A is well suited to detect and promote degradation of damaged proteins because of its central role in translation elongation. Our findings provide a mechanistic foundation for defining how cellular proteins are degraded cotranslationally.


Journal of Biological Chemistry | 1997

Conservation and diversity of eukaryotic translation initiation factor eIF3

Katsura Asano; Terri Goss Kinzy; William C. Merrick; John W. B. Hershey

The largest of the mammalian translation initiation factors, eIF3, consists of at least eight subunits ranging in mass from 35 to 170 kDa. eIF3 binds to the 40 S ribosome in an early step of translation initiation and promotes the binding of methionyl-tRNAi and mRNA. We report the cloning and characterization of human cDNAs encoding two of its subunits, p110 and p36. It was found that the second slowest band during polyacrylamide gel electrophresis of eIF3 subunits in sodium dodecyl sulfate contains two proteins: p110 and p116. Analysis of the cloned cDNA encoding p110 indicates that its amino acid sequence is 31% identical to that of the yeast protein, Nip1. The p116 cDNA was cloned and characterized as a human homolog of yeast Prt1, as described elsewhere (Méthot, N., Rom, E., Olsen, H., and Sonenberg, N. (1997) J. Biol. Chem. 272, 1110-1116). p36 is a WD40 repeat protein, which is 46% identical to the p39 subunit of yeast eIF3 and is identical to TRIP-1, a phosphorylation substrate of the TGF-β type II receptor. The p116, p110, and p36 subunits localize on 40 S ribosomes in cells active in translation and co-immunoprecipitate with affinity-purified antibodies against the p170 subunit, showing that these proteins are integral components of eIF3. Although p36 and p116 have homologous protein subunits in yeast eIF3, the p110 homolog, Nip1, is not detected in yeast eIF3 preparations. The results indicate both conservation and diversity in eIF3 between yeast and humans.


Nature Structural & Molecular Biology | 2003

Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase

René Jørgensen; Pedro A. Ortiz; Anne Carr-Schmid; Poul Nissen; Terri Goss Kinzy; Gregers R. Andersen

Two crystal structures of yeast translation elongation factor 2 (eEF2) were determined: the apo form at 2.9 Å resolution and eEF2 in the presence of the translocation inhibitor sordarin at 2.1 Å resolution. The overall conformation of apo eEF2 is similar to that of its prokaryotic homolog elongation factor G (EF-G) in complex with GDP. Upon sordarin binding, the three tRNA-mimicking C-terminal domains undergo substantial conformational changes, while the three N-terminal domains containing the nucleotide-binding site form an almost rigid unit. The conformation of eEF2 in complex with sordarin is entirely different from known conformations observed in crystal structures of EF-G or from cryo-EM studies of EF-G–70S complexes. The domain rearrangements induced by sordarin binding and the highly ordered drug-binding site observed in the eEF2–sordarin structure provide a high-resolution structural basis for the mechanism of sordarin inhibition. The two structures also emphasize the dynamic nature of the ribosomal translocase.


Nature | 2006

Structure of Eef3 and the Mechanism of Transfer RNA Release from the E-Site.

Christian Brix Folsted Andersen; Thomas Becker; Michael Blau; Monika Anand; Mario Halic; Bharvi Balar; Thorsten Mielke; Thomas Boesen; Jan Skov Pedersen; Christian M. T. Spahn; Terri Goss Kinzy; Gregers R. Andersen; Roland Beckmann

Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA–eEF1A–GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.


Nature Structural & Molecular Biology | 2001

Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Balpha complex.

Gregers R. Andersen; Louis Valente; Lise Pedersen; Terri Goss Kinzy; Jens Nyborg

In the elongation cycle of protein biosynthesis, the nucleotide exchange factor eEF1Bα catalyzes the exchange of GDP bound to the G-protein, eEF1A, for GTP. To obtain more information about the recently solved eEF1A–eEF1Bα structure, we determined the structures of the eEF1A–eEF1Bα–GDP–Mg2+, eEF1A–eEF1Bα–GDP and eEF1A–eEF1Bα–GDPNP complexes at 3.0, 2.4 and 2.05 Å resolution, respectively. Minor changes, specifically around the nucleotide binding site, in eEF1A and eEF1Bα are consistent with in vivo data. The base, sugar and α-phosphate bind as in other known nucleotide G-protein complexes, whereas the β- and γ-phosphates are disordered. A mutation of Lys 205 in eEF1Bα that inserts into the Mg2+ binding site of eEF1A is lethal. This together with the structures emphasizes the essential role of Mg2+ in nucleotide exchange in the eEF1A–eEF1Bα complex.


Wiley Interdisciplinary Reviews - Rna | 2012

The many roles of the eukaryotic elongation factor 1 complex

Arjun N. Sasikumar; Winder B. Perez; Terri Goss Kinzy

The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non‐canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance. WIREs RNA 2012, 3:543–555. doi: 10.1002/wrna.1118


PLOS Pathogens | 2010

Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis.

Zhenghe Li; Judit Pogany; Steven Tupman; Anthony M. Esposito; Terri Goss Kinzy; Peter D. Nagy

Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication.

Collaboration


Dive into the Terri Goss Kinzy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Merrick

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun N. Sasikumar

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge