Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terri Wrin is active.

Publication


Featured researches published by Terri Wrin.


Science | 2009

Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target

Laura M. Walker; Sanjay Phogat; Po-Ying Chan-Hui; Denise Wagner; Pham Phung; Julie L. Goss; Terri Wrin; Melissa Simek; Steven P. Fling; Jennifer L. Mitcham; Jennifer Lehrman; Frances Priddy; Ole A. Olsen; Steven Frey; Phillip W. Hammond; Protocol G. Principal Investigators; Stephen Kaminsky; Timothy J. Zamb; Matthew Moyle; Wayne C. Koff; Pascal Poignard; Dennis R. Burton

Anti-HIV Antibodies One of the top priorities for an HIV vaccine is the ability to elicit a broadly neutralizing antibody response, which should provide the best protection against infection. In the 25 years since the discovery of HIV, very few broadly neutralizing antibodies have been identified, and those that do exist were discovered nearly two decades ago. Using a high-throughput culture system, Walker et al. (p. 285; published online 3 September) now identify two additional broadly neutralizing antibodies isolated from a clade A HIV-infected African donor. These antibodies exhibit great potency and, in contrast to other known broadly neutralizing antibodies, are able to neutralize a wide range of viruses from many different clades. The antibodies recognize a motif in the trimerized viral envelope protein that is found in conserved regions of the variable loops of the gp120 subunit. Identification of this motif provides an intriguing new target for vaccine development. High-throughput screening has revealed two new broadly neutralizing antibodies from a clade A–infected donor in Africa. Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1–infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1–infected individuals, primarily infected with non–clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A–infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. This epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Rapid evolution of the neutralizing antibody response to HIV type 1 infection

Douglas D. Richman; Terri Wrin; Susan J. Little; Christos J. Petropoulos

A recombinant virus assay was used to characterize in detail neutralizing antibody responses directed at circulating autologous HIV in plasma. Examining serial plasma specimens in a matrix format, most patients with primary HIV infection rapidly generated significant neutralizing antibody responses to early (0–39 months) autologous viruses, whereas responses to laboratory and heterologous primary strains were often lower and delayed. Plasma virus continually and rapidly evolved to escape neutralization, indicating that neutralizing antibody exerts a level of selective pressure that has been underappreciated based on earlier, less comprehensive characterizations. These data argue that neutralizing antibody responses account for the extensive variation in the envelope gene that is observed in the early months after primary HIV infection.


Nature | 2011

Broad neutralization coverage of HIV by multiple highly potent antibodies

Laura M. Walker; Michael Huber; Katie J. Doores; Emilia Falkowska; Robert Pejchal; Jean-Philippe Julien; Sheng-Kai Wang; Alejandra Ramos; Po-Ying Chan-Hui; Matthew Moyle; Jennifer L. Mitcham; Phillip W. Hammond; Ole A. Olsen; Pham Phung; Steven P. Fling; Chi-Huey Wong; Sanjay Phogat; Terri Wrin; Melissa Simek; Protocol G. Principal Investigators; Wayne C. Koff; Ian A. Wilson; Dennis R. Burton; Pascal Poignard

Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.


Journal of Virology | 2004

Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies.

James M. Binley; Terri Wrin; Bette Korber; Michael B. Zwick; Meng Wang; Colombe Chappey; Gabriela Stiegler; Renate Kunert; Susan Zolla-Pazner; Hermann Katinger; Christos J. Petropoulos; Dennis R. Burton

ABSTRACT Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV+ plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (≤7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV+ plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.


The New England Journal of Medicine | 2001

Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia

Steven G. Deeks; Terri Wrin; Teri Liegler; Matthew S. Hayden; Jason D. Barbour; Nicholas S. Hellmann; Christos J. Petropoulos; Joseph M. McCune; Marc K. Hellerstein; Robert M. Grant

BACKGROUND In many patients with human immunodeficiency virus (HIV) infection, therapy with potent antiretroviral drugs does not result in complete suppression of HIV replication. The effect of cessation of therapy in these patients is unknown. METHODS Sixteen patients who had a plasma HIV RNA level of more than 2500 copies per milliliter during combination antiretroviral-drug therapy were randomly assigned, in a 2:1 ratio, to discontinue or continue therapy. Plasma HIV RNA levels, CD4 cell counts, and drug susceptibility were measured weekly. Viral replicative capacity was measured at base line and at week 12. RESULTS Discontinuation of therapy for 12 weeks was associated with a median decrease in the CD4 cell count of 128 cells per cubic millimeter and an increase in the plasma HIV RNA level of 0.84 log copies per milliliter. Virus from all patients with detectable resistance at entry became susceptible to HIV-protease inhibitors within 16 weeks after the discontinuation of therapy. Drug susceptibility began to increase a median of six weeks after the discontinuation of therapy and was temporally associated with increases in plasma HIV RNA levels and decreases in CD4 cell counts. Viral replicative capacity, measured by means of a recombinant-virus assay, was low at entry into the study and increased after therapy was discontinued. Despite the loss of detectable resistance in plasma, resistant virus was cultured from peripheral-blood mononuclear cells in five of nine patients who could be evaluated. Plasma HIV RNA levels, CD4 cell counts, and drug susceptibility remained stable in the patients who continued therapy. CONCLUSIONS Despite the presence of reduced drug susceptibility, antiretroviral-drug therapy can provide immunologic and virologic benefit. This benefit reflects continued antiviral-drug activity and the maintenance of a viral population with a reduced replicative capacity.


Antimicrobial Agents and Chemotherapy | 2000

A Novel Phenotypic Drug Susceptibility Assay for Human Immunodeficiency Virus Type 1

Christos J. Petropoulos; Neil T. Parkin; Kay Limoli; Yolanda Lie; Terri Wrin; Wei Huang; Huan Tian; Douglas H. Smith; Genine A. Winslow; Daniel J. Capon; Jeannette M. Whitcomb

ABSTRACT Although combination antiretroviral therapy has resulted in a considerable improvement in the treatment of human immunodeficiency virus (HIV) type 1 (HIV-1) infection, the emergence of resistant virus is a significant obstacle to the effective management of HIV infection and AIDS. We have developed a novel phenotypic drug susceptibility assay that may be useful in guiding therapy and improving long-term suppression of HIV replication. Susceptibility to protease (PR) and reverse transcriptase (RT) inhibitors is measured by using resistance test vectors (RTVs) that contain a luciferase indicator gene and PR and RT sequences derived from HIV-1 in patient plasma. Cells are transfected with RTV DNA, resulting in the production of virus particles that are used to infect target cells. Since RTVs are replication defective, luciferase activity is measured following a single round of replication. The assay has been automated to increase throughput and is completed in 8 to 10 days. Test results may be useful in facilitating the selection of optimal treatment regimens for patients who have failed prior therapy or drug-naive patients infected with drug-resistant virus. In addition, the assay can be used to evaluate candidate drugs and assist in the development of new drugs that are active against resistant strains of HIV-1.


Journal of Virology | 2009

Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm

Melissa Simek; Wasima Rida; Frances Priddy; Pham Pung; Emily Carrow; Dagna S. Laufer; Jennifer Lehrman; Mark Boaz; Tony Tarragona-Fiol; George Miiro; Josephine Birungi; Anton Pozniak; Dale A. McPhee; Olivier Manigart; Etienne Karita; André Inwoley; Walter Jaoko; Jack DeHovitz; Linda-Gail Bekker; Punnee Pitisuttithum; Robert Paris; Laura M. Walker; Pascal Poignard; Terri Wrin; Patricia Fast; Dennis R. Burton; Wayne C. Koff

ABSTRACT The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC50) neutralization titers of ≥100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC50 titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.


The Journal of Infectious Diseases | 2008

Genetic and Immunologic Heterogeneity among Persons Who Control HIV Infection in the Absence of Therapy

Florencia Pereyra; Marylyn M. Addo; Daniel E. Kaufmann; Yang Liu; Toshiyuki Miura; Almas Rathod; Brett Baker; Alicja Trocha; Rachel Rosenberg; Elizabeth W. Mackey; Peggy Ueda; Zhigang Lu; Daniel E. Cohen; Terri Wrin; Christos J. Petropoulos; Eric S. Rosenberg; Bruce D. Walker

BACKGROUND Spontaneous control of human immunodeficiency virus (HIV) infection has been documented in a minority of HIV-infected individuals. The mechanisms behind this outcome remain largely unknown, and a better understanding of them will likely influence future vaccine strategies. METHODS HIV-specific T cell and antibody responses as well as host genetics were examined in untreated HIV-infected patients who maintain comparatively low plasma HIV RNA levels (hereafter, controllers), including those with levels of < 50 RNA copies/mL (elite controllers, n = 64), those with levels of 50-2000 copies/mL (viremic controllers, n = 60); we also examined HIV-specific T cell and antibody responses as well as host genetics for patients with levels of >10,000 copies/mL (chronic progressors, n = 30). RESULTS CD8+ T cells from both controller groups preferentially target Gag over other proteins in the context of diverse HLA class I alleles, whereas responses are more broadly distributed in persons with progressive infection. Elite controllers represent a distinct group of individuals who have significantly more CD4 and CD8 T cells that secrete interferon-gamma and interleukin-2 and lower levels of HIV-neutralizing antibodies. Individual responses were quite heterogeneous, and none of the parameters evaluated was uniquely associated with the ability to control viremia. CONCLUSIONS Elite controllers are a distinct group, even when compared to persons with low level viremia, but they exhibit marked genetic and immunologic heterogeneity. Even low-level viremia among HIV controllers was associated with measurable T cell dysfunction, which has implications for current prophylactic vaccine strategies.


Journal of Virology | 2003

Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1

Aran Frank Labrijn; Pascal Poignard; Aarti Raja; Michael B. Zwick; Karla Delgado; Michael Franti; James M. Binley; Veronique Vivona; Christoph Grundner; Chih-chin Huang; Miro Venturi; Christos J. Petropoulos; Terri Wrin; Dimiter S. Dimitrov; James Robinson; Peter D. Kwong; Richard T. Wyatt; Joseph Sodroski; Dennis R. Burton

ABSTRACT Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the extraordinary neutralizing ability of Fab X5, we evaluated the abilities of different forms (immunoglobulin G [IgG], Fab, and single-chain Fv) of X5 and other CD4i monoclonal antibodies to neutralize a range of primary HIV-1 isolates. Our results show that, for a number of isolates, the size of the neutralizing agent is inversely correlated with its ability to neutralize. Thus, the poor ability of CD4i-specific antibodies to neutralize primary isolates is due, at least in part, to steric factors that limit antibody access to the gp120 epitopes. Studies of temperature-regulated neutralization or fusion-arrested intermediates suggest that the steric effects are important in limiting the binding of IgG to the viral envelope glycoproteins after HIV-1 has engaged CD4 on the target cell membrane. The results identify hurdles in using CD4i epitopes as targets for antibody-mediated neutralization in vaccine design but also indicate that the CD4i regions could be efficiently targeted by small molecule entry inhibitors.


Antimicrobial Agents and Chemotherapy | 2007

Development and Characterization of a Novel Single-Cycle Recombinant-Virus Assay To Determine Human Immunodeficiency Virus Type 1 Coreceptor Tropism

Jeannette M. Whitcomb; Wei Huang; Signe Fransen; Kay Limoli; Jonathan Toma; Terri Wrin; Colombe Chappey; Linda D. B. Kiss; Ellen E. Paxinos; Christos J. Petropoulos

ABSTRACT Most human immunodeficiency virus type 1 (HIV-1) strains require either the CXCR4 or CCR5 chemokine receptor to efficiently enter cells. Blocking viral binding to these coreceptors is an attractive therapeutic target. Currently, several coreceptor antagonists are being evaluated in clinical trials that require characterization of coreceptor tropism for enrollment. In this report, we describe the development of an automated and accurate procedure for determining HIV-1 coreceptor tropism (Trofile) and its validation for routine laboratory testing. HIV-1 pseudoviruses are generated using full-length env genes derived from patient virus populations. Coreceptor tropism is determined by measuring the abilities of these pseudovirus populations to efficiently infect CD4+/U87 cells expressing either the CXCR4 or CCR5 coreceptor. Viruses exclusively and efficiently infecting CXCR4+/CD4+/U87 cells are designated X4-tropic. Conversely, viruses exclusively and efficiently infecting CCR5+/CD4+/U87 cells are designated R5-tropic. Viruses capable of infecting both CXCR4+/CD4+/U87 and CCR5+/CD4+/U87 cells are designated dual/mixed-tropic. Assay accuracy and reproducibility were established by evaluating the tropisms of well-characterized viruses and the variability among replicate results from samples tested repeatedly. The viral subtype, hepatitis B virus or hepatitis C virus coinfection, and the plasma viral load did not affect assay performance. Minority subpopulations with alternate tropisms were reliably detected when present at 5 to 10%. The plasma viral load above which samples can be amplified efficiently in the Trofile assay is 1,000 copies per ml of plasma. Trofile has been automated for high-throughput use; it can be used to identify patients most likely to benefit from treatment regimens that include a coreceptor inhibitor and to monitor patients on treatment for the emergence of resistant virus populations that switch coreceptor tropism.

Collaboration


Dive into the Terri Wrin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Poignard

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge