Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terry Ashley is active.

Publication


Featured researches published by Terry Ashley.


Cell | 1997

Association of BRCA1 with Rad51 in Mitotic and Meiotic Cells

Ralph Scully; Junjie Chen; Annemieke W. Plug; Yonghong Xiao; David R. Weaver; Jean Feunteun; Terry Ashley; David M. Livingston

BRCA1 immunostaining reveals discrete, nuclear foci during S phase of the cell cycle. Human Rad51, a homolog of bacterial RecA, behaves similarly. The two proteins were found to colocalize in vivo and to coimmunoprecipitate. BRCA1 residues 758-1064 alone formed Rad51-containing complexes in vitro. Rad51 is also specifically associated with developing synaptonemal complexes in meiotic cells, and BRCA1 and Rad51 were both detected on asynapsed (axial) elements of human synaptonemal complexes. These findings suggest a functional interaction between BRCA1 and Rad51 in the meiotic and mitotic cell cycles, which, in turn, suggests a role for BRCA1 in the control of recombination and of genome integrity.


Nature Genetics | 1996

Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over.

Scan M. Baker; Annemieke W. Plug; Tomas A. Prolla; C. Eric Bronner; Allie C. Harris; Xiang Yao; Donna Marie Christie; Craig Monell; N. Arnheim; Allan Bradley; Terry Ashley; R. Michael Liskay

Mice that are deficient in either the Pms2 or Msh2 DNA mismatch repair genes have microsatellite instability and a predisposition to tumours. Interestingly, Pms2–deficient males display sterility associated with abnormal chromosome pairing in meiosis. Here mice deficient in another mismatch repair gene, Mlh1, possess not only microsatellite instability but are also infertile (both males and females). Mlh 1 –deficient spermatocytes exhibit high levels of prematurely separated chromosomes and arrest in first division meiosis. We also show that Mlh1 appears to localize to sites of crossing over on meiotic chromosomes/Together these findings suggest that Mlh1 is involved in DNA mismatch repair and meiotic crossing over.


Molecular Cell | 1998

Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells

Junjie Chen; Daniel P. Silver; Deepika Walpita; Sharon B. Cantor; Adi F. Gazdar; Gail E. Tomlinson; Fergus J. Couch; Barbara L. Weber; Terry Ashley; David M. Livingston; Ralph Scully

BRCA1 and BRCA2 account for most cases of familial, early onset breast and/or ovarian cancer and encode products that each interact with hRAD51. Results presented here show that BRCA1 and BRCA2 coexist in a biochemical complex and colocalize in subnuclear foci in somatic cells and on the axial elements of developing synaptonemal complexes. Like BRCA1 and RAD51, BRCA2 relocates to PCNA+ replication sites following exposure of S phase cells to hydroxyurea or UV irradiation. Thus, BRCA1 and BRCA2 participate, together, in a pathway(s) associated with the activation of double-strand break repair and/or homologous recombination. Dysfunction of this pathway may be a general phenomenon in the majority of cases of hereditary breast and/or ovarian cancer.


Cell | 1995

Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis

Sean M. Baker; C. Eric Bronner; Lin Zhang; Annemieke W. Plug; Merrilee Robatzek; Gwynedd Warren; Eileen A. Elliott; Jian Yu; Terry Ashley; Norman Arnheim; Richard A. Flavell; R. Michael Liskay

Using gene targeting in embryonic stem cells, we have derived mice with a null mutation in a DNA mismatch repair gene homolog, PMS2. We observed microsatellite instability in the male germline, in tail, and in tumor DNA of PMS2-deficient animals. We therefore conclude that PMS2 is involved in DNA mismatch repair in a variety of tissues. PMS2-deficient animals appear prone to sarcomas and lymphomas. PMS2-deficient males are infertile, producing only abnormal spermatozoa. Analysis of axial element and synaptonemal complex formation during prophase of meiosis I indicates abnormalities in chromosome synapsis. These observations suggest links among mismatch repair, genetic recombination, and chromosome synapsis in meiosis.


The EMBO Journal | 2000

Male sterility and enhanced radiation sensitivity in TLS−/− mice

Masahiko Kuroda; John Sok; Lisa Webb; Heidi Baechtold; Fumihiko Urano; Yin Yin; Peter Chung; Dirk G. de Rooij; Alexandre T. Akhmedov; Terry Ashley; David Ron

TLS (also known as FUS) is an RNA‐binding protein that contributes the N‐terminal half of fusion oncoproteins implicated in the development of human liposarcomas and leukemias. Here we report that male mice homozygous for an induced mutation in TLS are sterile with a marked increase in the number of unpaired and mispaired chromosomal axes in pre‐meiotic spermatocytes. Nuclear extracts from TLS−/− testes lack an activity capable of promoting pairing between homologous DNA sequences in vitro, and TLS−/− mice and embryonic fibroblasts exhibit increased sensitivity to ionizing irradiation. These results are consistent with a role for TLS in homologous DNA pairing and recombination.


American Journal of Human Genetics | 2002

Male Mouse Recombination Maps for Each Autosome Identified by Chromosome Painting

Lutz Froenicke; Lorinda K. Anderson; Johannes Wienberg; Terry Ashley

Linkage maps constructed from genetic analysis of gene order and crossover frequency provide few clues to the basis of genomewide distribution of meiotic recombination, such as chromosome structure, that influences meiotic recombination. To bridge this gap, we have generated the first cytological recombination map that identifies individual autosomes in the male mouse. We prepared meiotic chromosome (synaptonemal complex [SC]) spreads from 110 mouse spermatocytes, identified each autosome by multicolor fluorescence in situ hybridization of chromosome-specific DNA libraries, and mapped >2,000 sites of recombination along individual autosomes, using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites. We show that SC length is strongly correlated with crossover frequency and distribution. Although the length of most SCs corresponds to that predicted from their mitotic chromosome length rank, several SCs are longer or shorter than expected, with corresponding increases and decreases in MLH1 frequency. Although all bivalents share certain general recombination features, such as few crossovers near the centromeres and a high rate of distal recombination, individual bivalents have unique patterns of crossover distribution along their length. In addition to SC length, other, as-yet-unidentified, factors influence crossover distribution leading to hot regions on individual chromosomes, with recombination frequencies as much as six times higher than average, as well as cold spots with no recombination. By reprobing the SC spreads with genetically mapped BACs, we demonstrate a robust strategy for integrating genetic linkage and physical contig maps with mitotic and meiotic chromosome structure.


Chromosoma | 1995

Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates

Terry Ashley; Annemieke W. Plug; Jihong Xu; Alberto J. Solari; Gurucharan Reddy; Efim I. Golub; David C. Ward

Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chiken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.


The FASEB Journal | 2000

MSH4 acts in conjunction with MLH1 during mammalian meiosis

Sabine Santucci-Darmanin; Deepika Walpita; Françoise Lespinasse; Claude Desnuelle; Terry Ashley; Véronique Paquis-Flucklinger

MSH4 is a meiosis‐specific MutS homolog. In yeast, it is required for reciprocal recombination and proper segregation of homologous chromosomes at meiosis I. MLH1 (MutL homolog 1) facilitates both mismatch repair and crossing over during meiosis in yeast. Germ‐line mutations in the MLH1 human gene are responsible for hereditary nonpolyposis cancer, but the analysis of MLH1‐deficient mice has revealed that MLH1 is also required for reciprocal recombination in mammals. Here we show that hMSH4 interacts with hMLH1. The two proteins are coimmunoprecipitated regardless of the presence of DNA or ATP, suggesting that the interaction does not require the binding of MSH4 to DNA. The domain of hMSH4 responsible for the interaction is in the amino‐terminal part of the protein whereas the region that contains the ATP binding site and helix‐turn‐helix motif does not bind to hMLH1. Immunolocalization analysis shows that MSH4 is present at sites along the synaptonemal complex as soon as homologous chromosomes synapse. The number of MSH4 foci decreases gradually as pachynema progresses. During this transition, MLH1 foci begin to appear and colocalize with MSH4. These results suggest that MSH4 is first required for chromosome synapsis and that this MutS homologue is involved later with MLH1 in meiotic reciprocal recombination.–Santucci‐Darmanin, S., Walpita, D., Lespinasse, F., Desnuelle, C., Ashley, T., Paquis‐Flucklinger, V. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J. 14, 1539–1547 (2000)


American Journal of Human Genetics | 1998

Direct Evidence for Suppression of Recombination within Two Pericentric Inversions in Humans: A New Sperm-FISH Technique

Maarit Jaarola; Renée H. Martin; Terry Ashley

Crossover within a pericentric inversion produces reciprocal recombinant chromosomes that are duplicated/deficient for all chromatin distal to the breakpoints. In view of this fact, a new technique is presented for estimating the frequency of recombination within pericentric inversions. YAC probes were selected from within the q- and p-arm flanking regions of two human inversions, and two-color FISH analysis was performed on sperm from heterozygous inversion carriers. A total of 6,006 sperm were analyzed for chromosome 1 inversion (p31q12), and 3,168 were analyzed for chromosome 8 inversion (p23q22). Both inversions displayed suppression of crossing-over, although the amount of suppression differed between the two inversions. The recombination frequency of 13.1% recorded for chromosome 8 inversion was similar to the frequency of 11.4% previously estimated by the human/hamster-fusion method. For chromosome 1 inversion, the recombination frequency of 0. 4% reported here was below the limits of detection of the fusion technique. The simplicity of the FISH technique and the ease of scoring facilitate analysis of a sample-population size much larger than previously had been possible.


Biology of Reproduction | 2004

Ataxia Telangiectasia Mutated Expression and Activation in the Testis

Geert Hamer; Henk B. Kal; C. Westphal; Terry Ashley; Dirk G. de Rooij

Abstract Ionizing radiation (IR) and consequent induction of DNA double-strand breaks (DSBs) causes activation of the protein ataxia telangiectasia mutated (ATM). Normally, ATM is present as inactive dimers; however, in response to DSBs, the ATM dimer partners cross-phosphorylate each other on serine 1981, and kinase active ATM monomers are subsequently released. We have studied the presence of both nonphosphorylated as well as active serine 1981 phosphorylated ATM (pS1981-ATM) in the mouse testis. In the nonirradiated testis, ATM was present in spermatogonia and spermatocytes until stage VII of the cycle of the seminiferous epithelium, whereas pS1981-ATM was found only to be present in the sex body of pachytene spermatocytes. In response to IR, ATM became activated by pS1981 cross-phosphorylation in spermatogonia and Sertoli cells. Despite the occurrence of endogenous programmed DSBs during the first meiotic prophase and the presence of ATM in both spermatogonia and spermatocytes, pS1981 phosphorylated ATM did not appear in spermatocytes after treatment with IR. These results show that spermatogonial ATM and ATM in the spermatocytes are differentially regulated. In the mitotically dividing spermatogonia, ATM is activated by cross-phosphorylation, whereas during meiosis nonphosphorylated ATM or differently phosphorylated ATM is already active. ATM has been shown to be present at the synapsed axes of the meiotic chromosomes, and in the ATM knock-out mice spermatogenesis stops at pachytene stage IV of the seminiferous epithelium, indicating that indeed nonphosphorylated ATM is functional during meiosis. Additionally, ATM is constitutively phosphorylated in the sex body where its continued presence remains an enigma.

Collaboration


Dive into the Terry Ashley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liane B. Russell

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N.L.A. Cacheiro

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge