Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terry Disz is active.

Publication


Featured researches published by Terry Disz.


Nucleic Acids Research | 2014

The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)

Ross Overbeek; Robert Olson; Gordon D. Pusch; Gary J. Olsen; James J. Davis; Terry Disz; Robert Edwards; Svetlana Gerdes; Bruce Parrello; Maulik Shukla; Veronika Vonstein; Alice R. Wattam; Fangfang Xia; Rick Stevens

In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.


Nucleic Acids Research | 2005

The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes

Ross Overbeek; Tadhg P. Begley; Ralph Butler; Jomuna V. Choudhuri; Han-Yu Chuang; Matthew Cohoon; Valérie de Crécy-Lagard; Naryttza N. Diaz; Terry Disz; Robert D. Edwards; Michael Fonstein; Ed D. Frank; Svetlana Gerdes; Elizabeth M. Glass; Alexander Goesmann; Andrew C. Hanson; Dirk Iwata-Reuyl; Roy A. Jensen; Neema Jamshidi; Lutz Krause; Michael Kubal; Niels Bent Larsen; Burkhard Linke; Alice C. McHardy; Folker Meyer; Heiko Neuweger; Gary J. Olsen; Robert Olson; Andrei L. Osterman; Vasiliy A. Portnoy

The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.


Scientific Reports | 2015

RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

Thomas Brettin; James J. Davis; Terry Disz; Robert Edwards; Svetlana Gerdes; Gary J. Olsen; Robert Olson; Ross Overbeek; Bruce Parrello; Gordon D. Pusch; Maulik Shukla; James Thomason; Rick Stevens; Veronika Vonstein; Alice R. Wattam; Fangfang Xia

The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.


Nucleic Acids Research | 2017

Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center

Alice R. Wattam; James J. Davis; Rida Assaf; Sébastien Boisvert; Thomas Brettin; Christopher Bun; Neal Conrad; Emily M. Dietrich; Terry Disz; Joseph L. Gabbard; Svetlana Gerdes; Christopher S. Henry; Ronald Kenyon; Dustin Machi; Chunhong Mao; Eric K. Nordberg; Gary J. Olsen; Daniel Murphy-Olson; Robert Olson; Ross Overbeek; Bruce Parrello; Gordon D. Pusch; Maulik Shukla; Veronika Vonstein; Andrew S. Warren; Fangfang Xia; Hyun Seung Yoo; Rick Stevens

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by ‘virtual integration’ to any of PATRICs public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Nucleic Acids Research | 2007

The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation

Leslie K. McNeil; Claudia I. Reich; Ramy K. Aziz; Daniela Bartels; Matthew Cohoon; Terry Disz; Robert Edwards; Svetlana Gerdes; Kaitlyn Hwang; Michael Kubal; Gohar Rem Margaryan; Folker Meyer; William Mihalo; Gary J. Olsen; Robert Olson; Andrei L. Osterman; Daniel Paarmann; Tobias Paczian; Bruce Parrello; Gordon D. Pusch; Dmitry A. Rodionov; Xinghua Shi; Olga Vassieva; Veronika Vonstein; Olga Zagnitko; Fangfang Xia; Jenifer Zinner; Ross Overbeek; Rick Stevens

The National Microbial Pathogen Data Resource (NMPDR) () is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of ∼50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.


BMC Bioinformatics | 2010

Accessing the SEED Genome Databases via Web Services API: Tools for Programmers

Terry Disz; Sajia Akhter; Daniel A. Cuevas; Robert Olson; Ross Overbeek; Veronika Vonstein; Rick Stevens; Robert Edwards

BackgroundThe SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups.ResultsThe currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java.ConclusionsWe present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.


Biochimica et Biophysica Acta | 2011

Connecting genotype to phenotype in the era of high-throughput sequencing.

Christopher S. Henry; Ross Overbeek; Fangfang Xia; Aaron A. Best; Elizabeth M. Glass; Jack A. Gilbert; Peter E. Larsen; Robert Edwards; Terry Disz; Folker Meyer; Veronika Vonstein; Matthew DeJongh; Daniela Bartels; Narayan Desai; Mark D'Souza; Scott Devoid; Kevin P. Keegan; Robert Olson; Andreas Wilke; Jared Wilkening; Rick Stevens

BACKGROUND The development of next generation sequencing technology is rapidly changing the face of the genome annotation and analysis field. One of the primary uses for genome sequence data is to improve our understanding and prediction of phenotypes for microbes and microbial communities, but the technologies for predicting phenotypes must keep pace with the new sequences emerging. SCOPE OF REVIEW This review presents an integrated view of the methods and technologies used in the inference of phenotypes for microbes and microbial communities based on genomic and metagenomic data. Given the breadth of this topic, we place special focus on the resources available within the SEED Project. We discuss the two steps involved in connecting genotype to phenotype: sequence annotation, and phenotype inference, and we highlight the challenges in each of these steps when dealing with both single genome and metagenome data. MAJOR CONCLUSIONS This integrated view of the genotype-to-phenotype problem highlights the importance of a controlled ontology in the annotation of genomic data, as this benefits subsequent phenotype inference and metagenome annotation. We also note the importance of expanding the set of reference genomes to improve the annotation of all sequence data, and we highlight metagenome assembly as a potential new source for complete genomes. Finally, we find that phenotype inference, particularly from metabolic models, generates predictions that can be validated and reconciled to improve annotations. GENERAL SIGNIFICANCE This review presents the first look at the challenges and opportunities associated with the inference of phenotype from genotype during the next generation sequencing revolution. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.


Briefings in Bioinformatics | 2017

PATRIC as a unique resource for studying antimicrobial resistance

Dionysios A. Antonopoulos; Rida Assaf; Ramy K. Aziz; Thomas Brettin; Christopher Bun; Neal Conrad; James J. Davis; Emily M. Dietrich; Terry Disz; Svetlana Gerdes; Ronald W. Kenyon; Dustin Machi; Chunhong Mao; Daniel Murphy-Olson; Eric K. Nordberg; Gary J. Olsen; Robert J. Olson; Ross Overbeek; Bruce Parrello; Gordon D. Pusch; John Santerre; Maulik Shukla; Rick Stevens; Margo VanOeffelen; Veronika Vonstein; Andrew S. Warren; Alice R. Wattam; Fangfang Xia; Hyunseung Yoo

Abstract The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other ‘omic’ data analyses. In response to mounting concern over antimicrobial resistance (AMR), the PATRIC team has been developing new tools that help researchers understand AMR and its genetic determinants. To support comparative analyses, we have added AMR phenotype data to over 15 000 genomes in the PATRIC database, often assembling genomes from reads in public archives and collecting their associated AMR panel data from the literature to augment the collection. We have also been using this collection of AMR metadata to build machine learning-based classifiers that can predict the AMR phenotypes and the genomic regions associated with resistance for genomes being submitted to the annotation service. Likewise, we have undertaken a large AMR protein annotation effort by manually curating data from the literature and public repositories. This collection of 7370 AMR reference proteins, which contains many protein annotations (functional roles) that are unique to PATRIC and RAST, has been manually curated so that it projects stably across genomes. The collection currently projects to 1 610 744 proteins in the PATRIC database. Finally, the PATRIC Web site has been expanded to enable AMR-based custom page views so that researchers can easily explore AMR data and design experiments based on whole genomes or individual genes.


international conference on cluster computing | 2005

An Infrastructure of Network Services for Seamless Integration in Advanced Collaborative Computing Environments

Han Gao; Ivan R. Judson; Thomas Uram; Susanne Lefvert; Terry Disz; Michael E. Papka; Rick Stevens

Advanced collaborative computing environments are one of the most important tools for integrating high-performance computers and computations and for interacting with colleagues around the world. However, heterogeneous characteristics such as network transfer rates, computational abilities, and hierarchical systems make the seamless integration of distributed resources a challenge. In this paper, we argue that advanced collaborative computing environments need an infrastructure of network services to support distributed and quality guaranteed multimedia applications. Accordingly, we propose the design of network services for high-performance collaborative computing. We present a collaborative environment network service infrastructure (CENSI) to embed network services into various systems intelligently and elastically. We also discuss three management modules: a three-party matching module (resources, requests, and network services), a module for performance monitoring and evaluation of group communications, and a module for distribution topology analysis


international conference on lightning protection | 1988

Scheduling OR-Parallelism: An Argonne Perspective.

Ralph Butler; Terry Disz; Ewing L. Lusk; Robert Olson; Ross Overbeek; Rick Stevens

Collaboration


Dive into the Terry Disz's collaboration.

Top Co-Authors

Avatar

Ross Overbeek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rick Stevens

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert Olson

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Veronika Vonstein

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svetlana Gerdes

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce Parrello

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gordon D. Pusch

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert Edwards

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge