Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terry Kurth is active.

Publication


Featured researches published by Terry Kurth.


Journal of Hypertension | 2000

Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat

Richard J. Johnson; Katherine L. Gordon; Cecilia M. Giachelli; Terry Kurth; Meredith M. Skelton; Allen W. Cowley

Objective Alterations in renal nitric oxide (NO) are involved in the hypertension of the Dahl salt-sensitive (Dahl-SS) rat. We sought to identify the kinetics and sites of expression of the major NO synthase (NOS) isoforms. Design The renal expression of the major NOS were examined in Dahl-SS and salt-resistant rats (Dahl-SR) while on a low salt (0.1% NaCl) diet at 3 and 9 weeks of age. Methods Renal biopsies from Dahl-SS and Dahl-SR rats were compared for evidence of renal injury and for alterations in expression of the NOS enzymes by quantitative immunohistochemistry. Results At 3 weeks of age Dahl-SS and Dahl-SR rats have normal renal histology and similar immunohistochemical expression of NOS1, −2, and −3. At 9 weeks Dahl-SS rats had significantly higher blood pressure than Dahl-SR rats (P < 0.005), and lower macula densa NOS1 (P < 0.05) and cortical and medullary NOS3 (P < 0.05). NOS2 was reduced in cortical tubules in biopsies showing severe tubulointerstitial damage, but was not significantly different between Dahl-SS and Dahl-SR groups as a whole. Dahl-SS rats also manifested glomerular and tubulointerstitial injury. Tubular expression of osteopontin (OPN), which is an inhibitor of NOS2, correlated with the systolic BP in individual Dahl-SS rats (r2 = 0.80, P < 0.0001). Conclusion Tubulointerstitial injury and the loss of NOS occur after birth and parallel the development of hypertension. We suggest that the structural and functional changes that occur with renal injury in the Dahl-SS rat may contribute to the development of hypertension.


Physiological Genomics | 2010

Dynamic convergence and divergence of renal genomic and biological pathways in protection from Dahl salt-sensitive hypertension

Limin Lu; Peigang Li; Chun Yang; Terry Kurth; Michael Misale; Meredith M. Skelton; Carol Moreno; Richard J. Roman; Andrew S. Greene; Howard J. Jacob; Jozef Lazar; Mingyu Liang; Allen W. Cowley

Chromosome 13 consomic and congenic rat strains were analyzed to investigate the pattern of genomic pathway utilization involved in protection against salt-sensitive hypertension and renal injury. Introgression of the entire Brown-Norway chromosome 13 (consomic SS-13(BN)) or nonoverlapping segments of this chromosome (congenic strains, 16 Mbp in D13Rat151-D13Rat197 or 14 Mbp in D13Rat111-D13Got22) into the genome of the Dahl salt-sensitive rat attenuated salt-induced hypertension and proteinuria. mRNA abundance profiles in the renal cortex and the renal medulla from rats receiving 0.4% or 8% NaCl diets revealed two important features of pathway recruitment in these rat strains. First, the two congenic strains shared alterations in several pathways compared with Dahl salt-sensitive rats, despite the fact that the genomic segments introgressed in the two congenic strains did not overlap. Second, even though the genomic segment introgressed in each congenic strain was a part of the chromosome introgressed in the consomic strain, pathways altered in each congenic strain were not simply a subset of those altered in the consomic. Supporting the relevance of the mRNA data, differential expression of oxidative stress-related genes among the four strains of rats was associated with differences in urinary excretion of lipid peroxidation products. The findings suggest that different genetic alterations might converge to influence shared pathways in protection from hypertension, and that, depending on the genomic context, the same genetic alteration might diverge to affect different pathways.


Hypertension | 2013

Progression of Glomerular Filtration Rate Reduction Determined in Conscious Dahl Salt-Sensitive Hypertensive Rats

Allen W. Cowley; Robert P. Ryan; Terry Kurth; Meredith M. Skelton; Daniel Schock-Kusch; Norbert Gretz

Sequential changes in glomerular filtration rate (GFR) during development of hypertension in the conscious Dahl salt-sensitive (SS) rat were determined using a new method for measurement. Utilizing a miniaturized device, disappearance curves of fluorescein isothiocyanate (FITC)-sinistrin were measured by transcutaneous excitation and real time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure (MAP) by telemetry) were studied while maintained on a 0.4% NaCl diet and on days 2,5,7,14 and 21 after switching to 4.0% (HS) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. MAP rose progressively from the last day of 0.4% (130±2 mmHg) reaching significance by day 5 of HS and averaged 162±7 mmHg by day 21. Urine albumin excretion was significantly elevated (3×) by day 7 of HS in SS rats. GFR became reduced on day 14 of HS falling from 1.53±0.06 ml/min/100g bwgt to 1.27±0.04. By day 21, GFR had fallen 28% to 1.1±0.04 ml/min/100g bwgt (t1/2 28.4±1.1 min.) No significant reductions of creatinine clearance (Ccre) were observed throughout the study in response to HS demonstrating the insensitivity of Ccre measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of GFR was a consequence and not a cause of the hypertension and that this non-invasive approach could be used in these conscious SS rats for a longitudinal assessment of renal function.Sequential changes in glomerular filtration rate during development of hypertension in the conscious Dahl salt-sensitive rats were determined using a new method for measurement. Using a miniaturized device, disappearance curves of fluorescein isothiocyanate–sinistrin were measured by transcutaneous excitation and real-time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure by telemetry) were studied, while maintained on a 0.4% NaCl diet and on days 2, 5, 7, 14, and 21 after switching to 4.0% (high-salt [HS]) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. Mean arterial pressure rose progressively from the last day of 0.4% (130±2 mm Hg) reaching significance by day 5 of HS and averaged 162±7 mm Hg by day 21. Urine albumin excretion was significantly elevated (×3) by day 7 of HS in Dahl salt-sensitive rats. Glomerular filtration rate reduced on day 14 of HS falling from 1.53±0.06 mL/min per 100 g body weight to 1.27±0.04. By day 21, glomerular filtration rate had fallen 28% to 1.1±0.04 mL/min per 100 g (t1/2 28.4±1.1 minute.) No significant reductions of creatinine clearance were observed throughout the study in response to HS demonstrating the insensitivity of creatinine clearance measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of glomerular filtration rate was a consequence and not a cause of the hypertension and that this noninvasive approach could be used in these conscious Dahl salt-sensitive rats for a longitudinal assessment of renal function.


Hypertension | 2013

Increased Proliferative Cells in the Medullary Thick Ascending Limb of the Loop of Henle in the Dahl Salt-Sensitive Rat

Chun Yang; Francesco C. Stingo; Kwang Woo Ahn; Pengyuan Liu; Marina Vannucci; Purushottam W. Laud; Meredith M. Skelton; Paul M. O'Connor; Terry Kurth; Robert P. Ryan; Carol Moreno; Shirng Wern Tsaih; Giannino Patone; Oliver Hummel; Howard J. Jacob; Mingyu Liang; Allen W. Cowley

Studies of transcriptome profiles have provided new insights into mechanisms underlying the development of hypertension. Cell type heterogeneity in tissue samples, however, has been a significant hindrance in these studies. We performed a transcriptome analysis in medullary thick ascending limbs of the loop of Henle isolated from Dahl salt-sensitive rats. Genes differentially expressed between Dahl salt-sensitive rats and salt-insensitive consomic SS.13BN rats on either 0.4% or 7 days of 8.0% NaCl diet (n=4) were highly enriched for genes located on chromosome 13, the chromosome substituted in the SS.13BN rat. A pathway involving cell proliferation and cell cycle regulation was identified as one of the most highly ranked pathways based on differentially expressed genes and by a Bayesian model analysis. Immunofluorescent analysis indicated that just 1 week of a high-salt diet resulted in a severalfold increase in proliferative medullary thick ascending limb cells in both rat strains, and that Dahl salt-sensitive rats exhibited a significantly greater proportion of medullary thick ascending limb cells in a proliferative state than in SS.13BN rats (15.0±1.4% versus 10.1±0.6%; n=7–9; P<0.05). The total number of cells per medullary thick ascending limb section analyzed was not different between the 2 strains. The study revealed alterations in regulatory pathways in Dahl salt-sensitive rats in tissues highly enriched for a single cell type, leading to the unexpected finding of a greater increase in the number of proliferative medullary thick ascending limb cells in Dahl salt-sensitive rats on a high-salt diet.


Hypertension | 2013

Progression of Glomerular Filtration Rate Reduction Determined in Conscious Dahl Salt-Sensitive Hypertensive RatsNovelty and Significance

Allen W. Cowley; Robert P. Ryan; Terry Kurth; Meredith M. Skelton; Daniel Schock-Kusch; Norbert Gretz

Sequential changes in glomerular filtration rate (GFR) during development of hypertension in the conscious Dahl salt-sensitive (SS) rat were determined using a new method for measurement. Utilizing a miniaturized device, disappearance curves of fluorescein isothiocyanate (FITC)-sinistrin were measured by transcutaneous excitation and real time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure (MAP) by telemetry) were studied while maintained on a 0.4% NaCl diet and on days 2,5,7,14 and 21 after switching to 4.0% (HS) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. MAP rose progressively from the last day of 0.4% (130±2 mmHg) reaching significance by day 5 of HS and averaged 162±7 mmHg by day 21. Urine albumin excretion was significantly elevated (3×) by day 7 of HS in SS rats. GFR became reduced on day 14 of HS falling from 1.53±0.06 ml/min/100g bwgt to 1.27±0.04. By day 21, GFR had fallen 28% to 1.1±0.04 ml/min/100g bwgt (t1/2 28.4±1.1 min.) No significant reductions of creatinine clearance (Ccre) were observed throughout the study in response to HS demonstrating the insensitivity of Ccre measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of GFR was a consequence and not a cause of the hypertension and that this non-invasive approach could be used in these conscious SS rats for a longitudinal assessment of renal function.Sequential changes in glomerular filtration rate during development of hypertension in the conscious Dahl salt-sensitive rats were determined using a new method for measurement. Using a miniaturized device, disappearance curves of fluorescein isothiocyanate–sinistrin were measured by transcutaneous excitation and real-time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure by telemetry) were studied, while maintained on a 0.4% NaCl diet and on days 2, 5, 7, 14, and 21 after switching to 4.0% (high-salt [HS]) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. Mean arterial pressure rose progressively from the last day of 0.4% (130±2 mm Hg) reaching significance by day 5 of HS and averaged 162±7 mm Hg by day 21. Urine albumin excretion was significantly elevated (×3) by day 7 of HS in Dahl salt-sensitive rats. Glomerular filtration rate reduced on day 14 of HS falling from 1.53±0.06 mL/min per 100 g body weight to 1.27±0.04. By day 21, glomerular filtration rate had fallen 28% to 1.1±0.04 mL/min per 100 g (t1/2 28.4±1.1 minute.) No significant reductions of creatinine clearance were observed throughout the study in response to HS demonstrating the insensitivity of creatinine clearance measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of glomerular filtration rate was a consequence and not a cause of the hypertension and that this noninvasive approach could be used in these conscious Dahl salt-sensitive rats for a longitudinal assessment of renal function.


Hypertension | 2013

Progression of GFR reduction determined in conscious Dahl S hypertensive rats

Allen W. Cowley; Robert P. Ryan; Terry Kurth; Meredith M. Skelton; Daniel Schock-Kusch; Norbert Gretz

Sequential changes in glomerular filtration rate (GFR) during development of hypertension in the conscious Dahl salt-sensitive (SS) rat were determined using a new method for measurement. Utilizing a miniaturized device, disappearance curves of fluorescein isothiocyanate (FITC)-sinistrin were measured by transcutaneous excitation and real time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure (MAP) by telemetry) were studied while maintained on a 0.4% NaCl diet and on days 2,5,7,14 and 21 after switching to 4.0% (HS) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. MAP rose progressively from the last day of 0.4% (130±2 mmHg) reaching significance by day 5 of HS and averaged 162±7 mmHg by day 21. Urine albumin excretion was significantly elevated (3×) by day 7 of HS in SS rats. GFR became reduced on day 14 of HS falling from 1.53±0.06 ml/min/100g bwgt to 1.27±0.04. By day 21, GFR had fallen 28% to 1.1±0.04 ml/min/100g bwgt (t1/2 28.4±1.1 min.) No significant reductions of creatinine clearance (Ccre) were observed throughout the study in response to HS demonstrating the insensitivity of Ccre measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of GFR was a consequence and not a cause of the hypertension and that this non-invasive approach could be used in these conscious SS rats for a longitudinal assessment of renal function.Sequential changes in glomerular filtration rate during development of hypertension in the conscious Dahl salt-sensitive rats were determined using a new method for measurement. Using a miniaturized device, disappearance curves of fluorescein isothiocyanate–sinistrin were measured by transcutaneous excitation and real-time detection of the emitted light through the skin. Rats with implanted femoral venous catheters (dye injection and sampling) and carotid catheters (mean arterial pressure by telemetry) were studied, while maintained on a 0.4% NaCl diet and on days 2, 5, 7, 14, and 21 after switching to 4.0% (high-salt [HS]) diet. A separate group of rats were maintained on 0.4% for 21 days as a time control. Mean arterial pressure rose progressively from the last day of 0.4% (130±2 mm Hg) reaching significance by day 5 of HS and averaged 162±7 mm Hg by day 21. Urine albumin excretion was significantly elevated (×3) by day 7 of HS in Dahl salt-sensitive rats. Glomerular filtration rate reduced on day 14 of HS falling from 1.53±0.06 mL/min per 100 g body weight to 1.27±0.04. By day 21, glomerular filtration rate had fallen 28% to 1.1±0.04 mL/min per 100 g (t1/2 28.4±1.1 minute.) No significant reductions of creatinine clearance were observed throughout the study in response to HS demonstrating the insensitivity of creatinine clearance measurements even with creatinine measured using mass spectrometry. We conclude that the observed reduction of glomerular filtration rate was a consequence and not a cause of the hypertension and that this noninvasive approach could be used in these conscious Dahl salt-sensitive rats for a longitudinal assessment of renal function.


Archive | 2017

Renal Delivery of Anti-microRNA Oligonucleotides in Rats

Kristie Usa; Yong Liu; Terry Kurth; Alison J. Kriegel; David L. Mattson; Allen W. Cowley; Mingyu Liang

MicroRNAs are endogenous small, non-protein-coding RNA molecules that play an important role in the regulation of a wide variety of cellular functions and disease processes. A novel role for microRNAs in the development of hypertension and hypertensive tissue injury is emerging in recent studies. Development of hypertension involves multiple organ systems and cannot be modeled in vitro. Therefore, the ability to experimentally alter genes, gene products, or biological pathways, including microRNAs, in an organ-specific manner in intact animal models is particularly valuable to hypertension research. The kidney plays a central role in the long-term regulation of arterial blood pressure. In this chapter, we describe a detailed protocol for using a renal interstitial injection method to deliver anti-miR oligonucleotides to knock down microRNA specifically in the kidney in conscious rats.


Cell Metabolism | 2012

Increased expression of NAD(P)H oxidase subunit p67phox in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension

Di Feng; Chun Yang; Aron M. Geurts; Terry Kurth; Mingyu Liang; Jozef Lazar; David L. Mattson; Paul M. O'Connor; Allen W. Cowley


Archive | 2015

chromosomal substitution and cDNA microarray study Renal medullary genes in salt-sensitive hypertension: a

Paulo Soares; Glenn R. Slocum; Howard J. Jacob; Mingyu Liang; Baozhi Yuan; Elizabeth Rute; Ai-Ping Zou; Bina Joe; Joseph I. Shapiro; Allen W. Cowley; Shirng-Wern Tsaih; Giannino Patone; Oliver Hummel; Purushottam W. Laud; Meredith M. Skelton; Paul M. O'Connor; Terry Kurth; Robert P. Ryan; Francesco C. Stingo; Kwang Woo Ahn; Pengyuan Liu; Marina Vannucci


Archive | 2015

expressionpatterns of renal medullary gene Insights into Dahl salt-sensitive hypertension revealed

Baozhi Yuan; Elizabeth Rute; Andrew S. Greene; Michael Olivier; Allen W. Cowley; Shirng-Wern Tsaih; Giannino Patone; Oliver Hummel; Howard J. Jacob; Mingyu Liang; Purushottam W. Laud; Meredith M. Skelton; Paul M. O'Connor; Terry Kurth; Robert P. Ryan; Francesco C. Stingo; Kwang Woo Ahn; Pengyuan Liu; Marina Vannucci; Bina Joe

Collaboration


Dive into the Terry Kurth's collaboration.

Top Co-Authors

Avatar

Allen W. Cowley

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Meredith M. Skelton

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Robert P. Ryan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Mingyu Liang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Howard J. Jacob

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Pengyuan Liu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Chun Yang

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Paul M. O'Connor

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Purushottam W. Laud

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge