Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terry L. Erwin is active.

Publication


Featured researches published by Terry L. Erwin.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Nature | 2002

Increasing dominance of large lianas in Amazonian forests

Oliver L. Phillips; Rodolfo Vásquez Martínez; L. Arroyo; Timothy R. Baker; T. Killeen; Simon L. Lewis; Yadvinder Malhi; Abel Monteagudo Mendoza; David A. Neill; Percy Núñez Vargas; Miguel Alexiades; C. Cerón; A. Di Fiore; Terry L. Erwin; A. Jardim; Walter A. Palacios; M. Saldias; B. Vinceti

Ecological orthodoxy suggests that old-growth forests should be close to dynamic equilibrium, but this view has been challenged by recent findings that neotropical forests are accumulating carbon and biomass, possibly in response to the increasing atmospheric concentrations of carbon dioxide. However, it is unclear whether the recent increase in tree biomass has been accompanied by a shift in community composition. Such changes could reduce or enhance the carbon storage potential of old-growth forests in the long term. Here we show that non-fragmented Amazon forests are experiencing a concerted increase in the density, basal area and mean size of woody climbing plants (lianas). Over the last two decades of the twentieth century the dominance of large lianas relative to trees has increased by 1.7–4.6% a year. Lianas enhance tree mortality and suppress tree growth, so their rapid increase implies that the tropical terrestrial carbon sink may shut down sooner than current models suggest. Predictions of future tropical carbon fluxes will need to account for the changing composition and dynamics of supposedly undisturbed forests.


Nature | 2015

Long-term decline of the Amazon carbon sink

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; Simon L. Lewis; R. Vásquez Martínez; Miguel Alexiades; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Luzmila Arroyo; Olaf S. Bánki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; V. Chama; Kuo-Jung Chao; Jérôme Chave; James A. Comiskey

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Global Ecology and Biogeography | 2014

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore

Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.


Biodiversity and Conservation | 1998

Amazonian biodiversity: assessing conservation priorities with taxonomic data

Wj Kress; W. R. Heyer; P. Acevedo; Jonathan A. Coddington; D. Cole; Terry L. Erwin; B. J. Meggers; M. Pogue; Richard W. Thorington; Richard P Vari; Marilyn Weitzman; Stanley H. Weitzman

Data from 3991 records of museum collections representing 421 species of plants, arthropods, amphibians, fish, and primates were analyzed with GIS to identify areas of high species diversity and endemism in Amazonia. Of the 472 1 × 1° grid cells in Amazonia, only nine cells are included in the highest species diversity category (43–67 total species) and nine in the highest endemic species diversity category (4–13 endemic species). Over one quarter of the grid cells have no museum records of any of the organisms in our study. Little correspondence exists between the centers of species diversity identified by our collections-based data and those areas recommended for conservation in an earlier qualitative study of Amazonian biodiversity. Museum collections can play a vital role in identifying species-rich areas for potential conservation in Amazonia, but a concerted and structured effort to increase the number and distribution of collections is needed to take maximum advantage of the information they contain.


PLOS ONE | 2013

Tropical Plant–Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes

Carlos García-Robledo; David L. Erickson; Charles L. Staines; Terry L. Erwin; W. John Kress

Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station), we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2). Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2). Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8%) and genus (success/sequence = 47%). For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1%) and species (success/sequence = 61.6%). Kindt’s sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions.


Archive | 1979

Thoughts on the Evolutionary History of Ground Beetles: Hypotheses Generated from Comparative Faunal Analyses of Lowland Forest Sites in Temperate and Tropical Regions

Terry L. Erwin

Locating ground beetles in tropical regions is usually a frustrating experience for any but the experienced collector. Often, even the experienced have their problems. After seven years of tropical investigations, I found that the answer to the apparent rarity of these beetles in the tropics is due to patchy microdistribution, not lack of species or individuals. The observations, analysis, and explanation of this phenomenon became the cornerstone of this paper. Ancillary data gathered while collecting and observing behavior of carabids plus distributional and structural data of elements of the entire family led to the general evolutionary hypotheses presented here.


BioScience | 2011

Recovery Plan for the Endangered Taxonomy Profession

David L. Pearson; Andrew L. Hamilton; Terry L. Erwin

The worldwide decline in taxonomists has a broad impact on biology and society. Learning from general historical patterns of science and understanding social changes caused by growing economies, we propose changes in priorities for training taxonomists to reverse these losses. Academically trained professionals, parataxonomists (local assistants trained by professional biologists), youths educated with an emphasis on natural history, and self-supported expert amateurs are the major sources of taxonomists. Recruiting effort from each category is best determined by public attitudes toward education, as well as the availability of discretionary funds and leisure time. Instead of concentrating on descriptions of species and narrow studies of morphology and DNA, the duties of the few professional taxonomists of the future also will be to use cyberspace and a wide range of skills to recruit, train, and provide direction for expert amateurs, young students, parataxonomists, the general public, and governments.


Insect Conservation and Diversity | 2013

Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae)

Josephine J. Rodriguez; Jose Fernandez-Triana; M. Alex Smith; Daniel H. Janzen; Winnie Hallwachs; Terry L. Erwin; James B. Whitfield

We extrapolate a new range of estimates of the species richness of Microgastrinae (Hymenoptera: Braconidae) wasps, a diverse group of small parasitoids that attack caterpillars of Lepidoptera. Our estimates, using an array of focal study faunas to provide reasonable bounds for minimum and maximum values, range from 17 000 to 46 000+ species. These calculations make use of a geographically relatively constant proportion of the total number of local caterpillar species to species of Microgastrinae, and extend what is known from better studied areas to those less thoroughly studied. This new estimate of species richness for Microgastrinae is 8–20 times that of the ∼2000 currently described species, and 2–10 times greater than that of previously published estimates.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction

Carlos García-Robledo; Erin K. Kuprewicz; Charles L. Staines; Terry L. Erwin; W. John Kress

Significance Tolerance to high temperatures will determine the survival of animal species under projected global warming. Surprisingly little research has been conducted to elucidate how this trait changes in organisms living at different elevations of similar latitudes, especially in the tropics. DNA barcodes demonstrate that insect species previously thought to have broad elevational distributions and phenotypically plastic thermal tolerances actually comprise cryptic species complexes. These cryptic species occupy discrete elevational ranges, and their thermal tolerances seem to be locally adapted to temperatures in their life zones. The combination of high species endemism and local adaptation to temperature regimes may increase the extinction risk of high-elevation insects in a warming world. The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

Collaboration


Dive into the Terry L. Erwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyubomir Penev

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Chave

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abel Monteagudo

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

David A. Neill

Missouri Botanical Garden

View shared research outputs
Researchain Logo
Decentralizing Knowledge