Terry M. Wilwerding
Creighton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Terry M. Wilwerding.
Journal of Prosthetic Dentistry | 1996
Karson A Kupiec; Karen M Wuertz; Wayne W. Barkmeier; Terry M. Wilwerding
Intraoral repairs often involve bonding composite to fractured porcelain. Newer adhesive systems, currently referred to as multipurpose systems, include materials with recommended procedures for repair of porcelain. This laboratory study evaluated various treatment regimens with the ProBond adhesive system. Three different porcelain surface procedures were used: (1) air abrasion with aluminum oxide (50 microm), (2) 8% hydrofluoric acid, and (3) air abrasion and hydrofluoric acid. Eight different treatment procedures were then used to bond 10 composite cylinders to porcelain surfaces in each group. Shear bond strengths (in megapascals) were determined with an Instron testing machine after storage in water for 24 hours at 37 degrees C and after 3 months of storage and thermocycling. The combination of air abrasion and hydrofluoric acid on porcelain surfaces before bonding composite recorded the most consistently effective bond strengths. Four of the treatment regimens in the air abrasion groups yielded low bond strengths at 3 months. This study also indicated that silane treatment of porcelain is critical for development of suitable bond strengths for composite.
Journal of Prosthetic Dentistry | 1993
Ronald E. Appeldoorn; Terry M. Wilwerding; Wayne W. Barkmeier
A laboratory study was conducted to evaluate the mean shear bond strength of composite resin bonded to porcelain with the use of eight newer generation repair systems. The range of shear bond strength after 24 hours of water storage was 23.5 +/- 5.3 MPa to 12.0 +/- 2.3 MPa. After 3 months of water storage and thermocycling, the bond strength range was 20.7 +/- 1.7 MPa to 4.2 +/- 1.0 MPa. Three of eight systems evaluated did not exhibit a significant (p > 0.05) decrease in bond strength when the 24-hour bond strengths were compared with the 3-month bond strengths. Most specimens failed cohesively in the porcelain at 24 hours, but at 3 months only four of the eight systems showed consistent failures in the porcelain.
Operative Dentistry | 2009
Wayne W. Barkmeier; Robert L. Erickson; Nicole S. Kimmes; Mark A. Latta; Terry M. Wilwerding
The current study examined the effect of different enamel conditioning times on surface roughness and bond strength using an etch-and-rinse system and four self-etch adhesives. Surface roughness (Ra) and composite to enamel shear bond strengths (SBS) were determined following the treatment of flat ground human enamel (4000 grit) with five adhesive systems: (1) Adper Single Bond Plus (SBP), (2) Adper Prompt L-Pop (PLP), (3) Clearfil SE Bond (CSE), (4) Clearfil S3 Bond (CS3) and (5) Xeno IV (X4), using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Control groups were also included for Ra (4000 grit surface) and SBS (no enamel treatment and Adper Scotchbond Multi-Purpose Adhesive). For surface roughness measurements, the phosphoric acid conditioner of the SBP etch-and-rinse system was rinsed from the surface with an air-water spray, and the other four self-etch adhesive agents were removed with alternating rinses of water and acetone. A Proscan 2000 non-contact profilometer was used to determine Ra values. Composite (Z100) to enamel bond strengths (24 hours) were determined using Ultradent fixtures and they were debonded with a crosshead speed of 1 mm/minute. The data were analyzed with ANOVA and Fishers LSD post-hoc test. The etch-and- rinse system (SBP) produced the highest Ra (microm) and SBS (MPa) using both the recommended treatment time (0.352 +/- 0.028 microm and 40.5 +/- 6.1 MPa) and the extended treatment time (0.733 +/- 0.122 microm and 44.2 +/- 8.2 MPa). The Ra and SBS of the etch-and-rinse system were significantly greater (p < 0.05) than all the self-etch systems and controls. Increasing the treatment time with phosphoric acid (SBP) and PLP produced greater surface roughness (p < 0.05) but did not result in significantly higher bond strengths (p > 0.05).
Journal of Prosthodontics | 2008
James L. Sheets; Charles W. Wilcox; Terry M. Wilwerding
PURPOSE The purpose of this study was to assess and compare the retentive nature of common dental cements that have been adapted for use in the implant abutment cement-retained crown (CRC) technique with those specifically formulated for this purpose. MATERIALS AND METHODS Ten regular diameter implant analogs were embedded in stainless steel disks. Unmodified CRC abutments were attached and torqued to 30 Ncm. Test crowns were waxed and cast with base metal alloy. Castings were fitted, cleaned with aluminum oxide, and steam cleaned prior to application of the cement. The cements used were: (1) Temp Bond, (2) UltraTemp, regular, (3) UltraTemp firm, (4) ImProv with petroleum jelly coating of crown, (5) ImProv without petroleum jelly, (6) Premier Implant with KY Jelly coating of abutment, (7) Premier Implant without KY jelly, (8) TR-2, (9) Flecks, (10) Ketac Cem Aplicap, and (11) Fuji Plus Capsule. After cementation, assemblies were stored for 24 hours. Each sample was subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 5.0 mm/min. Loads required to remove the crowns were recorded, and mean values for each group determined. A one-way ANOVA and a post hoc least square difference (LSD) test were done for pairwise comparison at a confidence interval of 95%. RESULTS The mean values (+/-SD) of loads at failure (n = 10) for various cements were as follows (N): Ultratemp, regular 358.6 (+/-38.2) (Group A), ImProv without petroleum jelly 172.4 (+/-59.6) (Group B), Flecks 171.8 (+/-62.2) (Group B), Ketac Cem 167.8 (+/-69.1) (Group B), UltraTemp firm 158.8 (+/-62.7) (Group BC), Fuji Plus 147.5 (+/-69.7) (Group BC), Premier without KY jelly 131.6 (+/-31.8) (Group BC), ImProv using petroleum jelly 130.8 (+/-42.5) (Group BC), Temp Bond 117.8 (+/-48.3) (Group C), TR-2 41.2 (+/-16.6) (Group D), and Premier with KY jelly 31.6 (+/-24.8) (Group D). Groups with the same letter were not significantly different. CONCLUSIONS Within the limitations of this in vitro study, it is not suggested that any one cement is better than another at retaining cement-retained crowns (CRCs) to implant abutments or that a threshold value must be accomplished to ensure retention. The ranking of cements presented is meant to be a discretionary guide for the clinician in deciding the amount of desired retention between castings and implant abutments.
Operative Dentistry | 2008
Wayne W. Barkmeier; Mark A. Latta; Robert L. Erickson; Terry M. Wilwerding
This study used a new generalized wear model to examine the relationship between wear simulation and the clinical wear of two resin composites. Ten specimens each of P50 and Z100, were subjected to 100,000, 400,000 and 800,000 cycles in a spring-loaded piston-type wear simulator. Wear was generated using flat, cylindrically-shaped stainless steel antagonists on the resin composites, which were placed in custom stainless steel fixtures. A slurry of polymethyl methacrylate beads was used as the abrasive media. Wear was determined using profilometry, and the parameters examined included volume loss (mm3), maximum depth (microm), mean maximum depth (microm) and mean depth (microm). Statistical analysis of the laboratory wear data using ANOVA and Tukeys post hoc test showed a significant difference (p<0.05) for wear between the two materials and the number of cycles. Mean maximum wear (microm) values (100K--P50--11.5 +/- 1.8; Z100--4.9 +/- 1.0; 400K--P50--17.2 +/- 2.7; Z100--6.0 +/- 1.7; 800K--P50--20.5 +/- 4.6; Z100--9.6 +/- 2.5) were used for comparisons with clinical data. Previous clinical studies of P50 and Z100 were used to examine the relationship between laboratory and clinical wear. Linear regression analysis was used to predict laboratory and clinical wear rates. The laboratory wear rate for P50 was 1.3 microm/100K cycles and the rate for Z100 was 0.7 microm/100K cycles. The clinical wear rates for P50 and Z100 were 8.3 microm/year and 4.0 microm/year, respectively. The ratio of wear rates of P50 to Z100 for wear simulation was 1.9 and the ratio of P50 to Z100 for clinical rates was 2.1. These ratios showed good agreement between the relative wear rates of laboratory and clinical wear. For the two composite materials examined, this new simulation model appears to be effective for evaluating the relative wear of resin composites.
Operative Dentistry | 2017
Akimasa Tsujimoto; Wayne W. Barkmeier; Toshiki Takamizawa; Terry M. Wilwerding; Mark A. Latta; Masashi Miyazaki
OBJECTIVE This study investigated the interfacial characteristics and bond durability of universal adhesives to various substrates. METHODS AND MATERIALS Two universal adhesives were used: 1) Scotchbond Universal and 2) G-Premio Bond. The substrates used were bovine enamel and dentin with or without phosphoric acid etching, resin composite, lithium disilicate and leucite-reinforced glass ceramics, zirconia, and metal alloys. The surface free energy and the parameters of various substrates and of substrates treated by adhesive after light irradiation were determined by measuring the contact angles of three test liquids. Resin composite was bonded to the various substrates to determine shear bond strength after 24 hours water storage and 10,000 thermal cycles. A one-way analysis of variance (ANOVA) and the Tukey post hoc test were used for the surface free energy data, and a two-way ANOVA and the Tukey post hoc test were used for analysis of shear bond strength data (α=0.05). RESULTS The interfacial characteristics of the various substrates show significant differences depending on the type of substrate, but the interfacial characteristics of substrate treated by adhesive after light irradiation did not show any significant differences regardless of the substrate used. The bond durability of two universal adhesives to various substrates differs depending on the type of substrate and the adhesive. CONCLUSIONS The results of this study suggest that universal adhesives modify the interfacial characteristics of a wide range of substrates and create a consistent surface, but the bond durability of universal adhesive to various substrates differs depending on the type of substrate and the adhesive.
Operative Dentistry | 2013
Wayne W. Barkmeier; Robert L. Erickson; Latta Ma; Terry M. Wilwerding
SUMMARY A laboratory study was conducted to examine the wear of resin composite materials using a generalized wear simulation model. Ten specimens each of five resin composites (Esthet•X [EX], Filtek Supreme Plus [SP], Filtek Z250 [Z2], Tetric EvoCeram [EC], and Z100 Restorative [Z1]) were subjected to wear challenges of 100,000, 400,000, 800,000, and 1,200,000 cycles. The materials were placed in cylinder-shaped stainless-steel fixtures, and wear was generated using a flat stainless-steel antagonist in a slurry of polymethylmethacrylate beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2000) with Proscan and ProForm software. Statistical analysis of the laboratory data using analysis of variance and Tukeys post hoc test showed a significant difference (p<0.05) for mean wear facet depth and volume loss for both the number of cycles and resin composite material. Linear regression analysis was used to develop predictive wear rates and volume loss rates. Linear wear was demonstrated with correlation coefficients (R(2)) ranging from 0.914 to 0.995. Mean wear values (mean facet depth [μm]) and standard deviations (SD) for 1200K cycles were as follows: Z1 13.9 (2.0), Z2 26.7 (2.7), SP 30.1 (4.1), EC 31.8 (2.3), and EX 67.5 (8.2). Volume loss (mm(3)) and SDs for 1200K cycles were as follows: Z1 0.248 (0.036), Z2 0.477 (0.044), SP 0.541 (0.072), EC 0.584 (0.037), and EX 1.162 (0.139). The wear rate (μm) and volume loss rate (mm(3)) per 100,000 cycles for the five resin composites were as follows: wear rate Z1 0.58, EC 1.27, Z2 1.49, SP 1.62, and EX 4.35, and volume loss rate Z1 0.009, EC 0.024, Z2 0.028, SP 0.029, and EX 0.075. The generalized wear model appears to be an excellent method for measuring relative wear of resin composite materials.
Lasers in Dentistry II | 1996
Richard J. Blankenau; Scott Pace; G. L. Powell; Terry M. Wilwerding
A great deal of discussion has taken place regarding how to properly polymerize light activated resins. Claims are made that effective testing can be made by using surface hardness tests on samples with various dental instruments. Although these tests would probably identify a material that had been very poorly polymerized it would not identify materials that were properly polymerized. The lack of consistent, reproducible forces and evaluation of the results make these test practically worthless. Surface hardness which is important clinically has value when combined with evaluation of the surface immediately adjacent to the light source and the surface adjacent to the tooth. Also immediate and 24 hour testing to allow for continued polymerization is helpful in determining how to achieve best results for our patients. A variety of new light sources have been introduced to dentistry with claims of faster and better polymerizations. The visible light units are also undergoing improvements to include built in meters to monitor light output. The purpose of this study was to evaluate the top and bottom surface hardness of a composite resin using the following light sources: argon, xenon, and two visible light sources.
Journal of Prosthetic Dentistry | 1994
John W. Thurmond; Wayne W. Barkmeier; Terry M. Wilwerding
American Journal of Dentistry | 1995
Kelsey Wp rd; Cavel T; Richard J. Blankenau; Wayne W. Barkmeier; Terry M. Wilwerding; Latta Ma