Terry P. Bigioni
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Terry P. Bigioni.
Nature | 2013
Anil Desireddy; Brian E. Conn; Jingshu Guo; Bokwon Yoon; R. N. Barnett; Bradley M. Monahan; Kristin Kirschbaum; Wendell P. Griffith; Robert L. Whetten; Uzi Landman; Terry P. Bigioni
Noble-metal nanoparticles have had a substantial impact across a diverse range of fields, including catalysis, sensing, photochemistry, optoelectronics, energy conversion and medicine. Although silver has very desirable physical properties, good relative abundance and low cost, gold nanoparticles have been widely favoured owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation (tarnishing), which has limited the development of important silver-based nanomaterials. Despite two decades of synthetic efforts, silver nanoparticles that are inert or have long-term stability remain unrealized. Here we report a simple synthetic protocol for producing ultrastable silver nanoparticles, yielding a single-sized molecular product in very large quantities with quantitative yield and without the need for size sorting. The stability, purity and yield are substantially better than those for other metal nanoparticles, including gold, owing to an effective stabilization mechanism. The particular size and stoichiometry of the product were found to be insensitive to variations in synthesis parameters. The chemical stability and structural, electronic and optical properties can be understood using first-principles electronic structure theory based on an experimental single-crystal X-ray structure. Although several structures have been determined for protected gold nanoclusters, none has been reported so far for silver nanoparticles. The total structure of a thiolate-protected silver nanocluster reported here uncovers the unique structure of the silver thiolate protecting layer, consisting of Ag2S5 capping structures. The outstanding stability of the nanoparticle is attributed to a closed-shell 18-electron configuration with a large energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, an ultrastable 32-silver-atom excavated-dodecahedral core consisting of a hollow 12-silver-atom icosahedron encapsulated by a 20-silver-atom dodecahedron, and the choice of protective coordinating ligands. The straightforward synthesis of large quantities of pure molecular product promises to make this class of materials widely available for further research and technology development.
Journal of the American Chemical Society | 2010
Santosh Kumar; Michael D. Bolan; Terry P. Bigioni
Magic-number theories, developed to explain the anomalous stability of clusters in the gas phase, are being successfully applied to explain the stability of families of condensed phase Au clusters. To test the generalizability of these theories, we have synthesized a family of magic-numbered Ag clusters. Silver clusters ligated with glutathione (GSH) were synthesized by reduction of silver glutathiolate in water and then separated by polyacrylamide gel electrophoresis (PAGE). The raw synthetic product consisted of a family of discrete Ag:SG clusters, each forming a band in the PAGE gel. Varying reaction conditions changed the relative abundance of the family members but not their positions and colors within the gel, indicating the molecular precision of magic-number clusters. Absorption onsets for the most abundant clusters monotonically decreased with increasing cluster size, and spectra contained a small number of peaks that corresponded to single electron transitions. Although these Ag:SG clusters are related to Au:SG clusters, the distribution of cluster sizes and the optical absorption spectra were markedly different for the two families. This suggests that the Ag:SG clusters are not a simple extension of the Au:SG system, possibly due to differences in Au and Ag chemistry. Alternatively, condensed-phase magic-number cluster theories may need to be more complex than currently believed.
Physical Review Letters | 2005
T. B. Tran; I. S. Beloborodov; Xiao-Min Lin; Terry P. Bigioni; V. M. Vinokur; Heinrich M. Jaeger
We investigate the effects of inelastic cotunneling on the electronic transport properties of gold nanoparticle multilayers and thick films at low applied bias, inside the Coulomb blockade regime. We find that the zero-bias conductance,
Analytical Chemistry | 2012
Jingshu Guo; Santosh Kumar; Michael D. Bolan; Anil Desireddy; Terry P. Bigioni; Wendell P. Griffith
g_0(T)
Physical Review E | 2009
L. Yu. Barash; Terry P. Bigioni; V. M. Vinokur; Lev N. Shchur
, in all systems exhibits Efros-Shklovskii-type variable range hopping transport. The resulting typical hopping distance, corresponding to the number of tunnel junctions participating in cotunneling events, is shown to be directly related to the power law exponent in the measured current-voltage characteristics. We discuss the implications of these findings in light of models on cotunneling and hopping transport in mesoscopic, granular conductors.
Journal of Fluid Mechanics | 2009
Francois Blanchette; Terry P. Bigioni
Mass spectrometry has played a key role in identifying the members of a series of gold clusters, which has enabled the development of magic-number cluster theory. The successes of the gold cluster system have yet to be repeated in another metal cluster system, however. Silver clusters in particular have proven to be challenging due to their relative instability compared with gold clusters. Using the well-characterized gold nanocluster, Au(25)(SG)(18), we present optimized electrospray ionization mass spectrometry (ESI-MS) instrumental parameters for the maximal transmission of the intact cluster. Parameters shown to have the largest effect on intact cluster transmission/detection include trap and transfer collision energy, source temperature, and cone gas flow rate. Herein we describe a general strategy to acquire mass spectra of fragile metal clusters with reliable mass assignments. By also optimizing sample solution conditions, high-quality ESI mass spectra of a prototypical silver:glutathione (Ag:SG) cluster were obtained without significant fragmentation. By using gentle conditions and solution conditions designed to stabilize the clusters, fragmentation was dramatically reduced and mass spectra with isotopic resolution were measured. Using this strategy, we have made the first formula assignment for a ligand-protected Ag cluster of Ag(32)(SG)(19).
Materials Letters | 1997
Srihari Murthy; Terry P. Bigioni; Zhong Lin Wang; Joseph T. Khoury; Robert L. Whetten
Theoretical description and numerical simulation of an evaporating sessile drop are developed. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop, and the diffusion of vapor in air. A shape of the rotationally symmetric drop is determined within the quasistationary approximation. Nonstationary effects in the diffusion of the vapor are also taken into account. Simulation results agree well with the data of evaporation rate measurements for the toluene drop. Marangoni forces associated with the temperature dependence of the surface tension generate fluid convection in the sessile drop. Our results demonstrate several dynamical stages of the convection characterized by different number of vortices in the drop. During the early stage the array of vortices arises near a surface of the drop and induces a nonmonotonic spatial distribution of the temperature over the drop surface. The initial number of near-surface vortices in the drop is controlled by the Marangoni cell size which is similar to that given by Pearson for flat fluid layers. This number quickly decreases with time resulting in three bulk vortices in the intermediate stage. The vortices finally transform into the single convection vortex in the drop existing during about 1/2 of the evaporation time.
Nanoscale | 2013
Anil Desireddy; Santosh Kumar; Jingshu Guo; Michael D. Bolan; Wendell P. Griffith; Terry P. Bigioni
Drop coalescence was studied using numerical simulations. Liquid drops were made to coalesce with a body of the same liquid, either a reservoir or a drop of different size, each with negligible impact velocity. We considered either gas or liquid as a surrounding fluid, and experimental results are discussed for the gas-liquid set-up. Under certain conditions, a drop will not fully coalesce with the liquid reservoir, leaving behind a daughter drop. Partial coalescence is observed for systems of low viscosity, characterized by a small Ohnesorge number, where capillary waves remain sufficiently vigourous to distort the drop significantly. For drops coalescing with a flat interface, we determine the critical Ohnesorge number as a function of Bond number, as well as density and viscosity ratios of the fluids. Studying the coalescence of two drops of different sizes reveals that partial coalescence may occur in low-viscosity systems provided the size ratio of the drops exceeds a certain threshold. We also determine the extent to which the process of partial coalescence is self-similar and find that the viscosity of the drop has a large effect on the droplets vertical velocity after pinch off. Finally, we report on the formation of satellite droplets generated after a first pinch off and on the ejection of a jet of tiny droplets during coalescence of a parent drop significantly deformed by gravity.
Journal of Vacuum Science & Technology B | 1999
L. E. Harrell; Terry P. Bigioni; W.G. Cullen; Robert L. Whetten; Phillip N. First
A liquid-phase method is reported for the preparation of dodecanethiol-derivatized silver nanocrystals. Toluene sols of this material maintain as sols in air at room temperature at least on the timescale of months. X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to obtain size and structural information about the nanocrystal core while solubility properties and energy dispersive X-ray spectroscopy (EDS) are used to identify the passivating layer. Laser desorption time-of-flight mass spectra (LDTOFMS) of this material show broad peaks in the mass range from 40 to 300 kamu. These results are consistent with the synthesized material being a dodecanethiol-derivatized silver nanocrystal material with a mean crystalline silver core of 3.1 + 0.6 nm.
Acta Crystallographica Section C-crystal Structure Communications | 2008
Matthias Hanauer; Abdollah Neshat; Terry P. Bigioni
The anomalous stability of magic-number metal clusters has been associated with closed geometric and electronic shells and the opening of HOMO-LUMO gaps. Despite this enhanced stability, magic-number clusters are known to decay and react in the condensed phase to form other products. Improving our understanding of their decay mechanisms and developing strategies to control or eliminate cluster instability is a priority, to develop a more complete theory of their stability, to avoid studying mixtures of clusters produced by the decay of purified materials, and to enable technology development. Silver clusters are sufficiently reactive to facilitate the study of the ambient temporal stability of magic-number metal clusters and to begin to understand their decay mechanisms. Here, the solution phase stability of a series of silver:glutathione (Ag:SG) clusters was studied as a function of size, pH and chemical environment. Cluster stability was found to be a non-monotonic function of size. Electrophoretic separations showed that the dominant mechanism involved the redistribution of mass toward smaller sizes, where the products were almost exclusively previously known cluster sizes. Optical absorption spectra showed that the smaller clusters evolved toward the two most stable cluster sizes. The net surface charge was found to play an important role in cluster stabilization although charge screening had no effect on stability, contrary to DLVO theory. The decay mechanism was found to involve the loss of Ag(+) ions and silver glutathionates. Clusters could be stabilized by the addition of Ag(+) ions and destabilized by either the addition of glutathione or the removal of Ag(+) ions. Clusters were also found to be most stable in near neutral pH, where they had a net negative surface charge. These results provide new mechanistic insights into the control of post-synthesis stability and chemical decay of magic-number metal clusters, which could be used to develop design principles for synthesizing specific cluster species.