Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teruhiko Kamei is active.

Publication


Featured researches published by Teruhiko Kamei.


international solid state circuits conference | 2007

A 56-nm CMOS 99-

Ken Takeuchi; Yasushi Kameda; Susumu Fujimura; Hiroyuki Otake; Koji Hosono; Hitoshi Shiga; Yoshihisa Watanabe; Takuya Futatsuyama; Yoshihiko Shindo; Masatsugu Kojima; Makoto Iwai; Masanobu Shirakawa; Masayuki Ichige; Kazuo Hatakeyama; Shinichi Tanaka; Teruhiko Kamei; Jia-Yi Fu; Adi Cernea; Yan Li; Masaaki Higashitani; Gertjan Hemink; Shinji Sato; Ken Oowada; Shih-Chung Lee; Naoki Hayashida; Jun Wan; Jeffrey W. Lutze; Shouchang Tsao; Mehrdad Mofidi; Kiyofumi Sakurai

A single 3.3-V only, 8-Gb NAND flash memory with the smallest chip to date, 98.8 mm2, has been successfully developed. This is the worlds first integrated semiconductor chip fabricated with 56-nm CMOS technologies. The effective cell size including the select transistors is 0.0075 mum2 per bit, which is the smallest ever reported. To decrease the chip size, a very efficient floor plan with one-sided row decoder, one-sided page buffer, and one-sided pad is introduced. As a result, an excellent 70% cell area efficiency is realized. The program throughput is drastically improved to twice as large as previously reported and comparable to binary memories. The best ever 10-MB/s programming is realized by increasing the page size from 4kB to 8kB. In addition, noise cancellation circuits and the dual VDD-line scheme realize both a small die size and a fast programming. An external page copy achieves a fast 93-ms block copy, efficiently using a 1-MB block size


IEEE Journal of Solid-state Circuits | 2006

{\hbox {mm}}^{2}

Takahiko Hara; Koichi Fukuda; Kazuhisa Kanazawa; Noboru Shibata; Koji Hosono; Hiroshi Maejima; Michio Nakagawa; Takumi Abe; Masatsugu Kojima; Masaki Fujiu; Yoshiaki Takeuchi; Kazumi Amemiya; Midori Morooka; Teruhiko Kamei; Hiroaki Nasu; Chi-Ming Wang; Kiyofumi Sakurai; Naoya Tokiwa; Hiroko Waki; Tohru Maruyama; Susumu Yoshikawa; Masaaki Higashitani; Tuan Pham; Yupin Fong; Toshiharu Watanabe

An 8-Gb multi-level NAND Flash memory with 4-level programmed cells has been developed successfully. The cost-effective small chip has been fabricated in 70-nm CMOS technology. To decrease the chip size, a one-sided pad arrangement with compacted core architecture and a block address expansion scheme without block redundancy replacement have been introduced. With these methods, the chip size has been reduced to 146 mm/sup 2/, which is 4.9% smaller than the conventional chip. In terms of performance, the program throughput reaches 6 MB/s at 4-KB page operation, which is significantly faster than previously reported and very competitive with binary Flash memories. This high performance has been achieved by the combination of the multi-level cell (MLC) programming with write caches and with the program voltage compensation technique for neighboring select transistors. The read throughput reaches 60 MB/s using 16I/O configuration.


IEEE Journal of Solid-state Circuits | 2009

8-Gb Multi-Level NAND Flash Memory With 10-MB/s Program Throughput

Raul-Adrian Cernea; Long Pham; Farookh Moogat; Siu Chan; Binh Le; Yan Li; Shouchang Tsao; Tai-Yuan Tseng; Khanh Nguyen; Jason Li; Jayson Hu; Jong Hak Yuh; Cynthia Hsu; Fanglin Zhang; Teruhiko Kamei; Hiroaki Nasu; Phil Kliza; Khin Htoo; Jeffrey W. Lutze; Yingda Dong; Masaaki Higashitani; Junnhui Yang; Hung-Szu Lin; Vamshi Sakhamuri; Alan Li; Feng Pan; Sridhar Yadala; Subodh Taigor; Kishan Pradhan; James Lan

A 16 Gb 4-state MLC NAND flash memory augments the sustained program throughput to 34 MB/s by fully exercising all the available cells along a selected word line and by using additional performance enhancement modes. The same chip operating as an 8 Gb SLC device guarantees over 60 MB/s programming throughput. The newly introduced all bit line (ABL) architecture has multiple advantages when higher performance is targeted and it was made possible by adopting the ldquocurrent sensingrdquo (as opposed to the mainstream ldquovoltage sensingrdquo) technique. The general chip architecture is presented in contrast to a state of the art conventional circuit and a double size data buffer is found to be necessary for the maximum parallelism attained. Further conceptual changes designed to counterbalance the area increase are presented, hierarchical column architecture being of foremost importance. Optimization of other circuits, such as the charge pump, is another example. Fast data access rate is essential, and ways of boosting it are described, including a new redundancy scheme. ABL contribution to energy saving is also acknowledged.


international solid-state circuits conference | 2009

A 146-mm/sup 2/ 8-gb multi-level NAND flash memory with 70-nm CMOS technology

Cuong Trinh; Noboru Shibata; T. Nakano; M. Ogawa; Jumpei Sato; Yasuhisa Takeyama; K. Isobe; Binh Le; Farookh Moogat; Nima Mokhlesi; Kenji Kozakai; Patrick Hong; Teruhiko Kamei; K. Iwasa; J. Nakai; Takahiro Shimizu; Mitsuaki Honma; S. Sakai; T. Kawaai; S. Hoshi; Jonghak Yuh; Cynthia Hsu; Taiyuan Tseng; Jason Li; Jayson Hu; Martin Liu; Shahzad Khalid; Jiaqi Chen; Mitsuyuki Watanabe; Hungszu Lin

Today NAND Flash memory is used for data and code storage in digital cameras, USB devices, cell phones, camcorders, and solid-state disk drives. Figure 13.6.1 shows the memory-density trend since 2003. To satisfy the market demand for lower cost per bit and higher density nonvolatile memory, in addition to technology scaling, 2b/cell MLC technology was introduced. Recently, MLC NAND flash memories with more than 2b/cell [1,2] have been reported.


international solid-state circuits conference | 2006

A 34 MB/s MLC Write Throughput 16 Gb NAND With All Bit Line Architecture on 56 nm Technology

Ken Takeuchi; Yasushi Kameda; Susumu Fujimura; Hiroyuki Otake; Koji Hosono; Hitoshi Shiga; Y. Watanabe; Takuya Futatsuyama; Yoshihiko Shindo; Masatsugu Kojima; Makoto Iwai; Masanobu Shirakawa; Masayuki Ichige; Kazuo Hatakeyama; Sumio Tanaka; Teruhiko Kamei; Jia-Yi Fu; Adi Cernea; Yan Li; Masaaki Higashitani; Gertjan Hemink; Shinji Sato; Ken Oowada; Shih-Chung Lee; N. Hayashida; Jun Wan; Jeffrey W. Lutze; Shouchang Tsao; Mehrdad Mofidi; Kiyofumi Sakurai

Fabricated in 56nm CMOS technology, an 8Gb multi-level NAND Flash memory occupies 98.8mm2, with a memory cell size of 0.0075mum/b. The 10MB/s programming and 93ms block copy are also realized by introducing 8kB page, noise-cancellation circuits, external page copy and the dual VDD scheme enabling efficient use of 1MB blocks


international solid-state circuits conference | 2008

A 5.6MB/s 64Gb 4b/Cell NAND Flash memory in 43nm CMOS

Kazushige Kanda; Masaru Koyanagi; Toshio Yamamura; Koji Hosono; Masahiro Yoshihara; Toru Miwa; Yosuke Kato; Alex Mak; Siu Lung Chan; Frank Tsai; Raul Adrian Cernea; Binh Le; Eiichi Makino; Takashi Taira; Hiroyuki Otake; Norifumi Kajimura; Susumu Fujimura; Yoshiaki Takeuchi; Mikihiko Itoh; Masanobu Shirakawa; Dai Nakamura; Yuya Suzuki; Yuki Okukawa; Masatsugu Kojima; Kazuhide Yoneya; Takamichi Arizono; Toshiki Hisada; Shinji Miyamoto; Mitsuhiro Noguchi; Toshitake Yaegashi

NAND flash memory use in digital still cameras and cellular phones is driving demand for larger-capacity storage. Moreover, NAND flash has the potential to replace HDDs. To achieve larger capacity while maintaining low cost per bit, technical improvements in feature size and area reduction are essential. To meet the stringent requirements, we develop a 16 Gb 4-level NAND flash memory in 43 nm CMOS technology. In 43 nm generation, gate-induced drain leakage (GIDL) influences the electrical field on both sides of NAND strings. GIDL causes severe program disturb problems to NAND flash memories. To avoid GIDL, two dummy wordlines (WL) on both sides of NAND strings are added. This is effective because the dummy gate voltages, are selected independent of the program inhibit voltage.


international solid-state circuits conference | 2012

A 56nm CMOS 99mm2 8Gb Multi-level NAND Flash Memory with 10MB/s Program Throughput

Yan Li; Seungpil Lee; Ken Oowada; Hao Nguyen; Qui Nguyen; Nima Mokhlesi; Cynthia Hsu; Jason Li; Venky Ramachandra; Teruhiko Kamei; Masaaki Higashitani; Tuan Pham; Mitsuaki Honma; Yoshihisa Watanabe; Kazumi Ino; Binh Le; Byungki Woo; Khin Htoo; Tai-Yuan Tseng; Long Pham; Frank Tsai; Kwang-ho Kim; Yi-Chieh Chen; Min She; Jong Yuh; Alex Chu; Chen Chen; Ruchi Puri; Hung-Szu Lin; Yi-Fang Chen

This paper addresses challenges with improvements made over previous NAND generations to achieve high performance while maintaining a low fail-bit count (FBC) and cost savings from an improved architecture and tightly packed peripheral circuits. Air gap [2,3] technology further improves write throughput by reducing neighbor interference and WL RC. A toggle mode 400Mb/s I/O interface reduces system overhead and enhances overall performance.


international solid-state circuits conference | 2009

A 120mm 2 16Gb 4-MLC NAND Flash Memory with 43nm CMOS Technology

Takuya Futatsuyama; Norihiro Fujita; Naoya Tokiwa; Yoshihiko Shindo; Toshiaki Edahiro; Teruhiko Kamei; Hiroaki Nasu; Makoto Iwai; Koji Kato; Yasuyuki Fukuda; Naoaki Kanagawa; Naofumi Abiko; Masahide Matsumoto; Toshihiko Himeno; Toshifumi Hashimoto; Yi-Ching Liu; Hardwell Chibvongodze; Takamitsu Hori; Manabu Sakai; Hong Ding; Yoshiharu Takeuchi; Hitoshi Shiga; Norifumi Kajimura; Yasuyuki Kajitani; Kiyofumi Sakurai; Kosuke Yanagidaira; Toshihiro Suzuki; Yuko Namiki; Tomofumi Fujimura; Man Mui

NAND flash memories are used in digital still cameras, cellular phones, MP3 players and various memory cards. As seen in the growing needs for applications such as solid-state drives and video camcoders, the market demands for larger-capacity storage has continuously increased and NAND Flash memories are enabling a wide range of new applications. In such situations, to achieve larger capacity at low cost per bit, technical improvement in feature-size scaling [1], multi-bit per cell [2,3] and area reduction are essential.


international solid-state circuits conference | 2008

128Gb 3b/cell NAND flash memory in 19nm technology with 18MB/s write rate and 400Mb/s toggle mode

Raul-Adrian Cernea; Long Pham; Farookh Moogat; Siu Chan; Binh Le; Yan Li; Shouchang Tsao; Tai-Yuan Tseng; Khanh Nguyen; Jason Li; J. Hu; Jong Park; Cynthia Hsu; Fanglin Zhang; Teruhiko Kamei; Hiroaki Nasu; Phil Kliza; Khin Htoo; Jeffrey W. Lutze; Yingda Dong; Masaaki Higashitani; Junhui Yang; Hung-Szu Lin; Vamshi Sakhamuri; A. Li; Feng Pan; Sridhar Yadala; Subodh Taigor; Kishan Pradhan; James Lan

In the diverse world of NAND flash applications, higher storage capacity is not the only imperative. Increasingly, performance is a differentiating factor and is also a way of creating new markets or expanding existing markets. While conventional memory uses, for actual operations, every other cell along a selected word line (WL) (Takeuchi, 2006), this design simultaneously exercises them all. A performance improvement of at least 100% is derived from this all-bitline (ABL) architecture relative to conventional chips. Additional techniques push performance to even higher levels.


international solid-state circuits conference | 2012

A 113mm2 32Gb 3b/cell NAND flash memory

Noboru Shibata; Kazushige Kanda; Toshiki Hisada; Katsuaki Isobe; Manabu Sato; Yuui Shimizu; Takahiro Shimizu; Tomohiko Sugimoto; T. Kobayashi; K. Inuzuka; Naoaki Kanagawa; Yasuyuki Kajitani; Takeshi Ogawa; J. Nakai; Kiyoaki Iwasa; Masatsugu Kojima; T. Suzuki; Yuya Suzuki; S. Sakai; Tomofumi Fujimura; Y. Utsunomiya; Toshifumi Hashimoto; Makoto Miakashi; N. Kobayashi; M. Inagaki; Yoko Matsumoto; Satoshi Inoue; D. He; Y. Honda; Junji Musha

NAND flash memory is widely used in digital cameras, USB devices, cell phones, camcorders and solid-state drives. Continuous lowering of bit cost, increasing flash-memory-die densities and improving performance have helped to expand flash markets. Recently, there are two different directions to meet market demands. One is lowering bit cost and increase memory density to the utmost limit, which is achieved by 4b/cell [1] or 3b/cell [2]. The other is focusing on high performance and high reliability. To meet both demands, we develop a 19nm 112.8mm2 64Gb 2b/cell NAND flash memory with the smallest die size ever reported. 15MB/s programming throughput and 400Mb/s/pin 1.8V Toggle Mode interface [3] are achieved for the first time. Die Micrograph and features are shown in Figure 25.1.1.

Collaboration


Dive into the Teruhiko Kamei's collaboration.

Researchain Logo
Decentralizing Knowledge