Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teruhisa Kawamura is active.

Publication


Featured researches published by Teruhisa Kawamura.


Journal of Clinical Investigation | 2008

The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats

Tatsuya Morimoto; Yoichi Sunagawa; Teruhisa Kawamura; Tomohide Takaya; Hiromichi Wada; Atsushi Nagasawa; Masashi Komeda; Masatoshi Fujita; Akira Shimatsu; Toru Kita; Koji Hasegawa

Hemodynamic overload in the heart can trigger maladaptive hypertrophy of cardiomyocytes. A key signaling event in this process is nuclear acetylation by histone deacetylases and p300, an intrinsic histone acetyltransferase (HAT). It has been previously shown that curcumin, a polyphenol responsible for the yellow color of the spice turmeric, possesses HAT inhibitory activity with specificity for the p300/CREB-binding protein. We found that curcumin inhibited the hypertrophy-induced acetylation and DNA-binding abilities of GATA4, a hypertrophy-responsive transcription factor, in rat cardiomyocytes. Curcumin also disrupted the p300/GATA4 complex and repressed agonist- and p300-induced hypertrophic responses in these cells. Both the acetylated form of GATA4 and the relative levels of the p300/GATA4 complex markedly increased in rat hypertensive hearts in vivo. The effects of curcumin were examined in vivo in 2 different heart failure models: hypertensive heart disease in salt-sensitive Dahl rats and surgically induced myocardial infarction in rats. In both models, curcumin prevented deterioration of systolic function and heart failure-induced increases in both myocardial wall thickness and diameter. From these results, we conclude that inhibition of p300 HAT activity by the nontoxic dietary compound curcumin may provide a novel therapeutic strategy for heart failure in humans.


Molecular and Cellular Biology | 2003

Cardiac p300 is involved in myocyte growth with decompensated heart failure

Tetsuhiko Yanazume; Koji Hasegawa; Tatsuya Morimoto; Teruhisa Kawamura; Hiromichi Wada; Akira Matsumori; Yosuke Kawase; Maretoshi Hirai; Toru Kita

ABSTRACT A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure.


Journal of Cellular Physiology | 2008

Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes

Takahiro Horie; Koh Ono; Kazuya Nagao; Hitoo Nishi; Minako Kinoshita; Teruhisa Kawamura; Hiromichi Wada; Akira Shimatsu; Toru Kita; Koji Hasegawa

In response to metabolic stress, GLUT4, the most abundant glucose transporter, translocates from intracellular vesicles to the plasma membrane. This appears to play an important role in protecting cardiac myocytes from ischemic injury. To investigate the precise mechanisms of GLUT4 translocation in cardiomyocytes, we have established a method for quantifying the relative proportion of sarcolemmal GLUT4 to total GLUT4 in these cells. Stimulation with H2O2 resulted in a concentration‐dependent increase in GLUT4 translocation, which peaked at 15 min after stimulation. The dominant‐negative form (DN) of AMP‐activated protein kinase (AMPK) α2 inhibited the H2O2‐induced translocation of GLUT4. We further examined the role of two known AMPK kinases (AMPKKs), calmodulin‐dependent protein kinase kinase (CaMKK)β and LKB1. The DN of CaMKKβ or LKB1 alone inhibited H2O2‐induced GLUT4 translocation only partially compared to the inhibition produced by the DN of AMPKα2. However, the combination of DN‐LKB1 and DN‐CaMKKβ inhibited translocation to an extent similar to with DN‐AMPKα2. Stimulation with H2O2 also activated Akt and the inhibition of PI3‐K/Akt prevented GLUT4 translocation to the same extent as with AMPK inhibition. When the DN of AMPKα2 was applied with DN‐PI3‐K, there was a complete reduction in the GLUT4 membrane level similar to that seen at the 0 time‐point. These results demonstrate that AMPK and PI3‐K/Akt have an additive effect on oxidative stress‐mediated GLUT4 translocation. J. Cell. Physiol. 215: 733–742, 2008.


Circulation | 2006

Histone Acetyltransferase Activity of p300 Is Required for the Promotion of Left Ventricular Remodeling After Myocardial Infarction in Adult Mice In Vivo

Shoichi Miyamoto; Teruhisa Kawamura; Tatsuya Morimoto; Koh Ono; Hiromichi Wada; Yosuke Kawase; Akira Matsumori; Ryosuke Nishio; Toru Kita; Koji Hasegawa

Background— Left ventricular (LV) remodeling after myocardial infarction is associated with hypertrophy of surviving myocytes and represents a major process that leads to heart failure. One of the intrinsic histone acetyltransferases, p300, serves as a coactivator of hypertrophy-responsive transcriptional factors such as a cardiac zinc finger protein GATA-4 and is involved in its hypertrophic stimulus-induced acetylation and DNA binding. However, the role of p300-histone acetyltransferase activity in LV remodeling after myocardial infarction in vivo is unknown. Methods and Results— To solve this problem, we have generated transgenic mice overexpressing intact p300 or mutant p300 in the heart. As the result of its 2–amino acid substitution in the p300-histone acetyltransferase domain, this mutant lost its histone acetyltransferase activity and was unable to activate GATA-4–dependent transcription. The two kinds of transgenic mice and the wild-type mice were subjected to myocardial infarction or sham operation at the age of 12 weeks. Intact p300 transgenic mice showed significantly more progressive LV dilation and diminished systolic function after myocardial infarction than wild-type mice, whereas mutant p300 transgenic mice did not show this. Conclusions— These findings demonstrate that cardiac overexpression of p300 promotes LV remodeling after myocardial infarction in adult mice in vivo and that histone acetyltransferase activity of p300 is required for these processes.


Journal of Biological Chemistry | 2008

Identification of p300-targeted Acetylated Residues in GATA4 during Hypertrophic Responses in Cardiac Myocytes

Tomohide Takaya; Teruhisa Kawamura; Tatsuya Morimoto; Koh Ono; Toru Kita; Akira Shimatsu; Koji Hasegawa

A zinc finger protein, GATA4, is one of the hypertrophy-responsive transcription factors and increases its DNA binding and transcriptional activities in response to hypertrophic stimuli in cardiac myocytes. Activation of GATA4 during this process is mediated, in part, through acetylation by intrinsic histone acetyltransferases such as a transcriptional coactivator p300. However, p300-targeted acetylated sites of GATA4 during myocardial cell hypertrophy have not been identified. By mutational analysis, we showed that 4 lysine residues located between amino acids 311 and 322 are required for synergistic activation of atrial natriuretic factor and endothelin-1 promoters by GATA4 and p300. A tetra-mutant GATA4, in which these 4 lysine residues were simultaneously mutated, retained the ability to localize in nuclei and to interact with cofactors including FOG-2, GATA6, and p300 but lacked p300-induced acetylation, DNA binding, and transcriptional activities. Furthermore, coexpression of the tetra-mutant GATA4 with wild-type GATA4 impaired the p300-induced acetylation, DNA binding, and transcriptional activities of the wild type. When we expressed the tetra-mutant GATA4 in neonatal rat cardiac myocytes using a lentivirus vector, this mutant suppressed phenylephrine-induced increases in cell size, protein synthesis, and expression of hypertrophy-responsive genes. However, its expression did not affect the basal state. Thus, we have identified the most critical lysine residues acting as p300-mediated acetylation targets in GATA4 during hypertrophic responses in cardiac myocytes. The results also demonstrate that GATA4 with simultaneous mutation of these sites specifically suppresses hypertrophic responses as a dominant-negative form, providing further evidence for the acetylation of GATA4 as one of critical nuclear events in myocardial cell hypertrophy.


Circulation Research | 2004

Endothelin-1–Dependent Nuclear Factor of Activated T Lymphocyte Signaling Associates With Transcriptional Coactivator p300 in the Activation of the B Cell Leukemia-2 Promoter in Cardiac Myocytes

Teruhisa Kawamura; Koh Ono; Tatsuya Morimoto; Masaharu Akao; Eri Iwai-Kanai; Hiromichi Wada; Naoya Sowa; Toru Kita; Koji Hasegawa

Endothelin-1 (ET-1) is a potent survival factor that protects cardiac myocytes from apoptosis. ET-1 induces cardiac gene transcription and protein expression of antiapoptotic B cell leukemia-2 (bcl-2) in a calcineurin-dependent manner. A cellular target of adenovirus early region 1A (E1A) oncoprotein, p300 also activates bcl-2 transcription in cardiac myocytes and is required for their survival. p300 acts as a calcineurin-regulated nuclear factors of activated T lymphocytes (NFATc), downstream targets of calcineurin. In addition, the bcl-2 promoter contains multiple NFAT consensus sequences. These findings prompted us to investigate the role of NFATc in ET-1–dependent and p300-dependent bcl-2 transcription in cardiac myocytes. In primary cardiac myocytes prepared from neonatal rats, mutation of 2 NFAT sites within the bcl-2 promoter completely abolished the ET-1– and p300-induced increases in the activity of this promoter. We show here that p300 markedly potentiates the binding of NFATc1 to the bcl-2 NFAT element by interacting with NFATc1 in an E1A-dependent manner. On the other hand, stimulation of cardiac myocytes with ET-1 causes nuclear translocation of NFATc1, which interacts with p300 and increases DNA binding. Expression of E1A did not change the cardiac nuclear localization of NFATc1 but blocked its interaction with p300, DNA binding, and bcl-2 promoter activation. These findings suggest that ET-1–dependent NFATc signaling associates with p300 in the transactivation of bcl-2 gene in cardiac myocytes.


Cell Stem Cell | 2015

ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency

Yasuyuki S. Kida; Teruhisa Kawamura; Zong Wei; Takahiro Sogo; Sandra Jacinto; Asako Shigeno; Hiroko Kushige; Eiji Yoshihara; Christopher Liddle; Joseph R. Ecker; Ruth T. Yu; Annette R. Atkins; Michael Downes; Ronald M. Evans

Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.


Journal of Biological Chemistry | 2004

FOG-2 Competes with GATA-4 for Transcriptional Coactivator p300 and Represses Hypertrophic Responses in Cardiac Myocytes

Maretoshi Hirai; Koh Ono; Tatsuya Morimoto; Teruhisa Kawamura; Hiromichi Wada; Toru Kita; Koji Hasegawa

A multizinc finger protein, FOG-2, associates with a cardiac transcription factor, GATA-4, and represses GATA-4-dependent transcription. GATA-4 is required not only for normal heart development but is also involved in hypertrophic responses in cardiac myocytes; however, the effects of FOG-2 on these responses are unknown. The interaction of GATA-4 with a transcriptional coactivator p300 is required for its full transcriptional activity and the activation of the embryonic program during myocardial cell hypertrophy. We show here that exogenous FOG-2 represses phenylephrine-induced hypertrophic responses such as myofibrillar organization, increases in cell size, and hypertrophy-associated gene transcription. Using immunoprecipitation Western blotting, we demonstrate that FOG-2 physically interacted with p300 and reduced the binding of GATA-4 to p300. In addition, in COS7 cells, in which the function of endogenous p300 is disrupted, FOG-2 is unable to repress the GATA-4-dependent transcriptional activities; however, FOG-2 markedly repressed the p300-mediated increase in the DNA-binding and transcriptional activities of GATA-4 in these cells. Similarly, FOG-2 inhibited a phenylephrine-induced increase in the p300/GATA-4 interaction, the GATA-4/DNA-binding, and transcriptional activities of GATA-4-dependent promoters in cardiac myocytes as well. These findings demonstrate that FOG-2 represses hypertrophic responses in cardiac myocytes and that p300 is involved in these repressive effects.


Journal of Biological Chemistry | 2010

Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes

Yoichi Sunagawa; Tatsuya Morimoto; Tomohide Takaya; Shinji Kaichi; Hiromichi Wada; Teruhisa Kawamura; Masatoshi Fujita; Akira Shimatsu; Toru Kita; Koji Hasegawa

A zinc finger protein GATA4 is one of the hypertrophy-responsive transcription factors and forms a complex with an intrinsic histone acetyltransferase, p300. Disruption of this complex results in the inhibition of cardiomyocyte hypertrophy and heart failure in vivo. By tandem affinity purification and mass spectrometric analyses, we identified cyclin-dependent kinase-9 (Cdk9) as a novel GATA4-binding partner. Cdk9 also formed a complex with p300 as well as GATA4 and cyclin T1. We showed that p300 was required for the interaction of GATA4 with Cdk9 and for the kinase activity of Cdk9. Conversely, Cdk9 kinase activity was required for the p300-induced transcriptional activities, DNA binding, and acetylation of GATA4. Furthermore, the kinase activity of Cdk9 was required for the phosphorylation of p300 as well as for cardiomyocyte hypertrophy. These findings demonstrate that Cdk9 forms a functional complex with the p300/GATA4 and is required for p300/GATA4- transcriptional pathway during cardiomyocyte hypertrophy.


Biochemical and Biophysical Research Communications | 2003

LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury

Kazuaki Kataoka; Koji Hasegawa; Tatsuya Sawamura; Masatoshi Fujita; Tetsuhiko Yanazume; Eri Iwai-Kanai; Teruhisa Kawamura; Taku Hirai; Toru Kita; Ryuji Nohara

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was originally identified as a receptor for oxidized low-density lipoprotein predominantly expressed in endothelial cells. LOX-1 expression can be induced in cardiomyocytes and that activation of LOX-1 is involved in apoptosis. To investigate possible roles of LOX-1 in myocardial ischemia-reperfusion injury, rats were subjected to coronary artery ligation for 1h followed by reperfusion for 2h. Immunohistochemistry revealed that expression of LOX-1 in cardiac myocytes was induced following ischemia-reperfusion but not ischemia alone. Administration of anti-LOX-1 monoclonal antibody resulted in a nearly 50% reduction in myocardial infarction size compared with that of normal IgG or saline (P<0.05). These findings suggest that activation of the LOX-1 pathway is involved in determining the extent of myocardial ischemia-reperfusion injury and that inhibition of the LOX-1 pathway may provide a novel strategy for treatment of acute myocardial infarction in humans.

Collaboration


Dive into the Teruhisa Kawamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge