Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terumi Saito is active.

Publication


Featured researches published by Terumi Saito.


Journal of Bacteriology | 2001

Cloning of an Intracellular Poly[d(−)-3-Hydroxybutyrate] Depolymerase Gene from Ralstonia eutropha H16 and Characterization of the Gene Product

Haruhisa Saegusa; Mari Shiraki; Chie Kanai; Terumi Saito

An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.


Journal of Bacteriology | 2007

Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA

Keiichi Uchino; Terumi Saito; Birgit Gebauer; Dieter Jendrossek

Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from (14)C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) from PHB. Synthesis of 3HB-CoA was also shown by incubation of artificial (protein-free) PHB with CoA and PhaZa1, confirming that PhaZa1 is a PHB depolymerase catalyzing the thiolysis reaction. Acetyl-CoA was the major product detectable after incubation of nPHB granules in the presence of NAD(+), indicating that downstream mobilizing enzyme activities were also present and active in isolated nPHB granules. We propose that intracellular concentrations of key metabolites (CoA, acetyl-CoA, 3HB-CoA, NAD(+)/NADH) determine whether a cell accumulates or degrades PHB. Since the degradation product of PHB is 3HB-CoA, the cells do not waste energy by synthesis and degradation of PHB. Thus, our results explain the frequent finding of simultaneous synthesis and breakdown of PHB.


Journal of Bacteriology | 2003

Purification and Properties of an Intracellular 3-Hydroxybutyrate-Oligomer Hydrolase (PhaZ2) in Ralstonia eutropha H16 and Its Identification as a Novel Intracellular Poly(3-Hydroxybutyrate) Depolymerase

Teruyuki Kobayashi; Mari Shiraki; Tomoko Abe; Akinori Sugiyama; Terumi Saito

An intracellular 3-hydroxybutyrate (3HB)-oligomer hydrolase (PhaZ2(Reu)) of Ralstonia eutropha was purified from Escherichia coli harboring a plasmid containing phaZ2(Reu). The purified enzyme hydrolyzed linear and cyclic 3HB-oligomers. Although it did not degrade crystalline poly(3-hydroxybutyrate) (PHB), the purified enzyme degraded artificial amorphous PHB at a rate similar to that of the previously identified intracellular PHB (iPHB) depolymerase (PhaZ1(Reu)). The enzyme appeared to be an endo-type hydrolase, since it actively hydrolyzed cyclic 3HB-oligomers. However, it degraded various linear 3HB-oligomers and amorphous PHB in the fashion of an exo-type hydrolase, releasing one monomer unit at a time. PhaZ2 was found to bind to PHB inclusion bodies and as a soluble enzyme to cell-free supernatant fractions in R. eutropha; in contrast, PhaZ1 bound exclusively to the inclusion bodies. When R. eutropha H16 was cultivated in a nutrient-rich medium, the transient deposition of PHB was observed: the content of PHB was maximized in the log growth phase (12 h, ca. 14% PHB of dry cell weight) and decreased to a very low level in the stationary phase (ca. 1% of dry cell weight). In each phaZ1-null mutant and phaZ2-null mutant, the PHB content in the cell increased to ca. 5% in the stationary phase. A double mutant lacking both phaZ1 and phaZ2 showed increased PHB content in the log phase (ca. 20%) and also an elevated PHB level (ca. 8%) in the stationary phase. These results indicate that PhaZ2 is a novel iPHB depolymerase, which participates in the mobilization of PHB in R. eutropha along with PhaZ1.


Journal of Bacteriology | 2005

Properties of a Novel Intracellular Poly(3-Hydroxybutyrate) Depolymerase with High Specific Activity (PhaZd) in Wautersia eutropha H16

Tomoko Abe; Teruyuki Kobayashi; Terumi Saito

A novel intracellular poly(3-hydroxybutyrate) (PHB) depolymerase (PhaZd) of Wautersia eutropha (formerly Ralstonia eutropha) H16 which shows similarity with the catalytic domain of the extracellular PHB depolymerase in Ralstonia pickettii T1 was identified. The positions of the catalytic triad (Ser190-Asp266-His330) and oxyanion hole (His108) in the amino acid sequence of PhaZd deduced from the nucleotide sequence roughly accorded with those of the extracellular PHB depolymerase of R. pickettii T1, but a signal peptide, a linker domain, and a substrate binding domain were missing. The PhaZd gene was cloned and the gene product was purified from Escherichia coli. The specific activity of PhaZd toward artificial amorphous PHB granules was significantly greater than that of other known intracellular PHB depolymerase or 3-hydroxybutyrate (3HB) oligomer hydrolases of W. eutropha H16. The enzyme degraded artificial amorphous PHB granules and mainly released various 3-hydroxybutyrate oligomers. PhaZd distributed nearly equally between PHB inclusion bodies and the cytosolic fraction. The amount of PHB was greater in phaZd deletion mutant cells than the wild-type cells under various culture conditions. These results indicate that PhaZd is a novel intracellular PHB depolymerase which participates in the mobilization of PHB in W. eutropha H16 along with other PHB depolymerases.


Journal of Bacteriology | 2005

Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16.

Teruyuki Kobayashi; Keiichi Uchino; Tomoko Abe; Yuya Yamazaki; Terumi Saito

Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in Escherichia coli. Then PhaZc was purified and characterized. Immunoblot analysis with polyclonal antiserum against PhaZc revealed that most PhaZc is present in the cytosolic fraction and a small amount is present in the poly(3-hydroxybutyrate) inclusion bodies of W. eutropha. PhaZc degraded various 3-hydroxybutyrate oligomers at a high specific activity and artificial amorphous poly(3-hydroxybutyrate) at a lower specific activity. Native PHB granules and semicrystalline PHB were not degraded by PhaZc. A PhaZ deletion mutation enhanced the deposition of PHB in the logarithmic phase in nutrient-rich medium. PhaZc differs from the hydrolases of W. eutropha previously reported and is a novel type of intracellular 3-hydroxybutyrate-oligomer hydrolase, and it participates in the mobilization of PHB along with other hydrolases.


Journal of Bioscience and Bioengineering | 2002

Cloning of an Intracellular D(-)-3-Hydroxybutyrate-Oligomer Hydrolase Gene from Ralstonia eutropha H16 and Identification of the Active Site Serine Residue by Site-Directed Mutagenesis.

Haruhisa Saegusa; Mari Shiraki; Terumi Saito

An intracellular D(-)-3-hydroxybutyrate (3HB)-oligomer hydrolase gene from Ralstonia eutropha (formerly Alcaligenes eutrophus) H16 was cloned, sequenced, and characterized. As a hybridization probe to screen restriction digests of chromosomal DNA, an extracellular 3HB-oligomer hydrolase gene from Ralstonia pickettii strain (formerly Pseudomonas sp. strain) A1 was used. A specific hybridization signal was obtained and a 6.5-kbp SmaI fragment was cloned in an Escherichia coli phagemid vector. The crude extract from E. coli with this plasmid showed 3HB-trimer hydrolase activity. The subcloned 3.2-kbp fragment still showed 3HB-trimer hydrolase activity in E. coli and expressed an approximately 78-kDa protein in an in vitro transcription-translation system. Nucleotide sequence analysis of the 3.2-kbp fragment showed an open reading frame that encodes a polypeptide with a deduced molecular weight of 78,510. The putative amino acid sequence showed 54% identity with that of the oligomer hydrolase from R. pickettii A1. By site-directed mutagenesis, a novel amino acid sequence (S-V-S*-N-G) containing an essential serine residue in the catalytic center of the enzyme was determined. The gene product was found in PHB-rich cells of R. eutropha by immunodetection. The expressed 3HB-oligomer hydrolase localized both in the supernatant fraction and the PHB granules of the cells.


Polymer Degradation and Stability | 1994

Enzymatic degradation of microbial poly(3-hydroxyalkanoates)

Youko Kanesawa; Naoki Tanahashi; Yoshiharu Doi; Terumi Saito

Abstract The microbial copolyesters incorporating 3-hydroxyalkanoate units with different chain lengths (C4–C10) were produced from various carbon substrates by Alcaligenes eutrophus or Pseudomonas oleovorans . The enzymatic degradation processes of the poly(3-hydroxyalkanoates) (PHA) films were studied at 37°C in a phosphate buffer (pH 7·4) containing the PHA depolymerase from A. faecalis T1 . The rate of enzymatic degradation was determined by monitoring the time-dependent changes in weight loss(erosion) of polyester films. The rate was strongly dependent upon the composition of the polyesters and markedly decreased with an increase in the side-chain length of the 3-hydroxyalkanoate monomeric units. The polyester chains were finally degraded into the monomers and dimers of 3-hydroxyalkanoic acids by the PHA depolymerase.


Journal of Environmental Polymer Degradation | 1999

Biochemical and genetic characterization of an extracellular poly(3-hydroxybutyrate) depolymerase from Acidovorax sp strain TP4.

Teruyuki Kobayashi; Akinori Sugiyama; Yoshiyuki Kawase; Terumi Saito; Joris Mergaert; Jean Swings

To determine the properties of enzymes from bacteria that degrade polypropiolactone (PPL), we isolated 13 PPL-degrading bacteria from pond water, river water, and soil. Nine of these strains were identified as Acidovorax sp., three as Variovorax paradoxus, and one as Sphingomonas paucimobilis. All the isolates also degraded poly(3-hydroxybutyrate) (PHB). A PPL-degrading enzyme was purified to electrophoretical homogeneity from one of these bacteria, designated Acidovorax sp. TP4. The purified enzyme also degraded PHB. The molecular weight of the enzyme was estimated as about 50,000. The enzyme activity was inhibited by diisopropylfluorophosphate, dithiothreitol, and Triton X-100. The structural gene of the depolymerase was cloned in Escherichia coli. The nucleotide sequence of the cloned DNA fragment contained an open reading frame (1476 bp) specifying a protein with a deduced molecular weight of 50,961 (491 amino acids). The deduced overall sequence was very similar to that of a PHB depolymerase of Comamonas acidovorans YM1609. From these results it was concluded that the isolated PPL-degrading enzyme belongs to the class of PHB depolymerases. A conserved amino acid sequence, Gly-X1-Ser-X2-Gly (lipase box), was found at the N-terminal side of the amino acid sequence. Site-directed mutagenesis of the TP4 enzyme confirmed that 20Ser in the lipase box was essential for the enzyme activity. This is the first report of the isolation a PHB depolymerase from Acidovorax.


Applied and Environmental Microbiology | 2008

Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16.

Keiichi Uchino; Terumi Saito; Dieter Jendrossek

ABSTRACT The recently finished genome sequence of Ralstonia eutropha H16 harbors nine genes that are thought to encode functions for intracellular depolymerization (mobilization) of storage poly(3-hydroxybutyrate) (PHB). Based on amino acid similarities, the gene products belong to four classes (PhaZa1 to PhaZa5, PhaZb, PhaZc, and PhaZd1/PhaZd2). However, convincing direct evidence for the in vivo roles of the gene products is poor. In this study, we selected four candidate genes (phaZa1, phaZb, phaZc, and phaZd1) representing the four classes and investigated the physiological function of the gene products (i) with recombinant Escherichia coli strains and (ii) with R. eutropha null mutants. Evidence for weak but significant PHB depolymerase activity was obtained only for PhaZa1. The physiological roles of the other potential PHB depolymerases remain uncertain.


Journal of Macromolecular Science, Part A | 1995

Radiation-Induced Graft Polymerization of Poly(3-Hydroxybutyrate) and Its Copolymer

Hiroshi Mitomo; T. Enjôji; Yuhei Watanabe; Fumio Yoshii; Keizo Makuuchi; Terumi Saito

Abstract Graft copolymerization of methyl methacrylate (MMA) or 2-hydroxyethyl methacrylate (HEMA) onto poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) {P(HBHV)} was carried out by using simultaneous radiation and preirradiation techniques from a 60Co γ-rays source. Degree of grafting (X g) of MMA onto both polymers increased as the irradiation dose increased. The X g for PHB graft-polymerized by simultaneous radiation was lower than that for the copolymer of 24 mol% HV content (24 M sample). On the contrary, X g of PHB graft-polymerized after preirradiation was higher than that of the 24 M sample. The X g depended on differences in regularity in the crystalline regions or crystallinity and rate of radical decay. Crystalline regions of PHB remained almost unchanged after grafting, while crystalline regions of the 24 M sample were partially destroyed by the introduction of grafting. Glass transition temperatures of both grafted polymers increased up to 8°C. The ...

Collaboration


Dive into the Terumi Saito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiharu Doi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhide Inagawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshio Inoue

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge