Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terutaka Yoshioka is active.

Publication


Featured researches published by Terutaka Yoshioka.


Journal of Experimental Botany | 2012

Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

Lancui Zhang; Gang Ma; Masaya Kato; Kazuki Yamawaki; Toshihiko Takagi; Yoshikazu Kiriiwa; Yoshinori Ikoma; Hikaru Matsumoto; Terutaka Yoshioka; Hirohisa Nesumi

In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation.


Plant Molecular Biology | 2005

Arabidopsis Rad51B is important for double-strand DNA breaks repair in somatic cells.

Keishi Osakabe; Kiyomi Abe; Hiroaki Yamanouchi; Toshio Takyuu; Terutaka Yoshioka; Yuji Ito; Tomohiko Kato; Satoshi Tabata; Shunsuke Kurei; Yasushi Yoshioka; Yasunori Machida; Motoaki Seki; Masatomo Kobayashi; Kazuo Shinozaki; Hiroaki Ichikawa; Seiichi Toki

Rad51 paralogs belong to the Rad52 epistasis group of proteins and are involved in homologous recombination (HR), especially the assembly and stabilization of Rad51, which is a homolog of RecA in eukaryotes. We previously cloned and characterized two RAD51 paralogous genes in Arabidopsis, named AtRAD51C and AtXRCC3, which are considered the counterparts of human RAD51C and XRCC3, respectively. Here we describe the identification of RAD51B homologue in Arabidopsis, AtRAD51B. We found a higher expression of AtRAD51B in flower buds and roots. Expression of AtRAD51B was induced by genotoxic stresses such as ionizing irradiation and treatment with a cross-linking reagent, cisplatin. Yeast two-hybrid analysis showed that AtRad51B interacted with AtRad51C. We also found and characterized T-DNA insertion mutant lines. The mutant lines were devoid of AtRAD51B expression, viable and fertile. The mutants were moderately sensitive to γ-ray and hypersensitive to cisplatin. Our results suggest that AtRAD51B gene product is involved in the repair of double-strand DNA breaks (DSBs) via HR


Scientific Reports | 2017

Genome-wide association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit quality traits

Mai F. Minamikawa; Keisuke Nonaka; Eli Kaminuma; Hiromi Kajiya-Kanegae; Akio Onogi; Shingo Goto; Terutaka Yoshioka; Atsushi Imai; Hiroko Hamada; Takeshi Hayashi; Satomi Matsumoto; Yuichi Katayose; Atsushi Toyoda; Asao Fujiyama; Yasukazu Nakamura; Tokurou Shimizu; Hiroyoshi Iwata

Novel genomics-based approaches such as genome-wide association studies (GWAS) and genomic selection (GS) are expected to be useful in fruit tree breeding, which requires much time from the cross to the release of a cultivar because of the long generation time. In this study, a citrus parental population (111 varieties) and a breeding population (676 individuals from 35 full-sib families) were genotyped for 1,841 single nucleotide polymorphisms (SNPs) and phenotyped for 17 fruit quality traits. GWAS power and prediction accuracy were increased by combining the parental and breeding populations. A multi-kernel model considering both additive and dominance effects improved prediction accuracy for acidity and juiciness, implying that the effects of both types are important for these traits. Genomic best linear unbiased prediction (GBLUP) with linear ridge kernel regression (RR) was more robust and accurate than GBLUP with non-linear Gaussian kernel regression (GAUSS) in the tails of the phenotypic distribution. The results of this study suggest that both GWAS and GS are effective for genetic improvement of citrus fruit traits. Furthermore, the data collected from breeding populations are beneficial for increasing the detection power of GWAS and the prediction accuracy of GS.


PLOS ONE | 2016

Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

Tokurou Shimizu; Akira Kitajima; Keisuke Nonaka; Terutaka Yoshioka; Satoshi Ohta; Shingo Goto; Atsushi Toyoda; Asao Fujiyama; Takako Mochizuki; Hideki Nagasaki; Eli Kaminuma; Yasukazu Nakamura

Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.


Journal of Plant Physiology | 2015

Effect of blue LED light intensity on carotenoid accumulation in citrus juice sacs

Lancui Zhang; Gang Ma; Kazuki Yamawaki; Yoshinori Ikoma; Hikaru Matsumoto; Terutaka Yoshioka; Satoshi Ohta; Masaya Kato

In the present study, the effects of blue LED light intensity on carotenoid accumulation and expression of genes related to carotenoid biosynthesis were investigated in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) and Valencia orange (Citrus sinensis Osbeck) in vitro. The results showed that 100 μmol m(-2)s(-1) blue LED light (100B) was effective for increasing carotenoid content, especially β-cryptoxanthin, in Satsuma mandarin after cultured in vitro for four weeks. In Valencia orange, in contrast, 50 μmol m(-2)s(-1) blue LED light (50B) treatment was effective for inducing carotenoid accumulation through increasing the contents of two major carotenoids, all-trans-violaxanthin and 9-cis-violaxanthin. In addition, gene expression results showed that the simultaneous increases in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb2, and CitHYb) involved in producing β,β-xanthophylls were well consistent with the accumulation of β-cryptoxanthin in Satsuma mandarin under 100B, and violaxanthin in Valencia orange under 50B. The results presented herein contribute to further elucidating the regulatory mechanism of carotenoid accumulation by blue LED light.


Plant Science | 2015

Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs

Lancui Zhang; Gang Ma; Kazuki Yamawaki; Yoshinori Ikoma; Hikaru Matsumoto; Terutaka Yoshioka; Satoshi Ohta; Masaya Kato

In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties.


Phytochemical Analysis | 2015

In Situ Detection and Identification of Hesperidin Crystals in Satsuma Mandarin (Citrus unshiu) Peel Cells

Tsuyoshi Inoue; Arata Yoshinaga; Keiji Takabe; Terutaka Yoshioka; Kazunori Ogawa; Masahiro Sakamoto; Junichi Azuma; Yoichi Honda

INTRODUCTION Hesperidin, a flavonoid known to have important pharmacological effects, accumulates particularly in the peels of satsuma mandarin (Citrus unshiu). Although histochemical studies have suggested that hesperidin forms crystals in some tissues of the Rutaceae and Umbelliferae, there has been no rigorous in situ detection or identification of hesperidin crystals in C. unshiu. OBJECTIVE To characterise the chemical component of the crystals found in C. unshiu peels using Raman microscopy. METHODS Sections of C. unshiu peels were made. The distribution and morphology of crystals in the sections were analysed microscopically. Raman microscopy was used to detect hesperidin in the sections directly. RESULTS The crystals were more abundant in immature peel and were observed particularly in areas surrounding vascular bundles, around the border between the flavedo and albedo layers and just below the epidermal cells. In the morphological analysis by scanning electron microscopy, needle-shaped crystals aggregated and formed clusters of spherical crystals. Spectra obtained by Raman microscopy of the crystals in the peel sections were consistent with those of the hesperidin standard. CONCLUSION This study showed the detailed distribution of crystals in C. unshiu peels and their main component was identified using Raman microscopy to be hesperidin for the first time.


Breeding Science | 2016

Parental diagnosis of satsuma mandarin (Citrus unshiu Marc.) revealed by nuclear and cytoplasmic markers

Hiroshi Fujii; Satoshi Ohta; Keisuke Nonaka; Yuichi Katayose; Toshimi Matsumoto; Tomoko Endo; Terutaka Yoshioka; Mitsuo Omura; Takehiko Shimada

Satsuma mandarins (Citrus unshiu Marc.) are the predominant cultivated citrus variety in Japan. Clarification of its origin would prove valuable for citrus taxonomy and mandarin breeding programs; however, current information is limited. We applied genome-wide genotyping using a 384 citrus single nucleotide polymorphism (SNP) array and MARCO computer software to investigate the satsuma mandarin parentage. Genotyping data from 206 validated SNPs were obtained to evaluate 67 citrus varieties and lines. A total of five parent–offspring relationships were newly found by MARCO based on the 206 SNP genotypes, indicating that ‘Kishuu mikan’ type mandarins (Citrus kinokuni hort. ex Tanaka accession ‘Kishuu mikan’ and ‘Nanfengmiju’) and ‘Kunenbo’ type mandarins (Citrus nobilis Lour. var. kunip Tanaka accession ‘Kunenbo’ and ‘Bendiguangju’) are possible parents of the satsuma mandarin. Moreover, cleaved amplified polymorphic sequences analysis showed that the genotypes of four regions in chloroplast DNA of ‘Kishuu mikan’ type mandarins were identical to that of the satsuma mandarin. Considering the historical background, satsuma mandarins may therefore derive from an occasional cross between a ‘Kishuu mikan’ type mandarin seed parent (derivative or synonym of ‘Nanfengmiju’) and a ‘Kunenbo’ type mandarin pollen parent (derivative or synonym of ‘Bendiguangju’).


PLOS ONE | 2016

Segregation and Heritability of Male Sterility in Populations Derived from Progeny of Satsuma Mandarin.

Shingo Goto; Terutaka Yoshioka; Satoshi Ohta; Masayuki Kita; Hiroko Hamada; Tokurou Shimizu

Male sterility derived from Satsuma mandarin (Citrus unshiu) has been used in Japanese citrus breeding programs to obtain seedless cultivars, which is a desirable trait for consumers. Male sterility has often been evaluated by anther development or pollen fertility; however, the inheritance and heritability of male sterility derived from Satsuma is poorly understood. In this study, we investigated the mode of inheritance and broad-sense heritability of male sterility derived from Satsuma. Initially, we evaluated the total number of pollen grains per anther and apparent pollen fertility, as indicated by lactophenol blue staining, in 15 citrus cultivars and selections to understand the male sterility of Satsuma. The results indicated that male sterility was primarily caused by decreased number of pollen grains per anther in progeny of Satsuma. We also evaluated these traits in three F1 populations (hyuganatsu × ‘Okitsu No. 56’, ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’), of which the parents are derived from Satsuma. Individuals in these populations showed strong segregation for number of pollen grains per anther. The apparent fertility of pollen also showed segregation but was almost constant at 70%–90%. The estimated broad-sense heritability for the number of pollen grains per anther was as high as 0.898 in the ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’ populations. These results indicated that the number of pollen grains per anther primarily determined male sterility among progeny of Satsuma, and this trait was inherited by the progeny. Development of DNA markers closely linked to male sterility using the F1 populations of ‘Okitsu No. 46’ × ‘Okitsu No. 56’ and ‘Okitsu No. 46’ × ‘Kara’ is expected to contribute to the breeding of novel seedless citrus cultivars.


Frontiers in Genetics | 2017

Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc.) Using a Hybrid Assembly Approach

Tokurou Shimizu; Yasuhiro Tanizawa; Takako Mochizuki; Hideki Nagasaki; Terutaka Yoshioka; Atsushi Toyoda; Asao Fujiyama; Eli Kaminuma; Yasukazu Nakamura

Satsuma (Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase”) was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.

Collaboration


Dive into the Terutaka Yoshioka's collaboration.

Top Co-Authors

Avatar

Keisuke Nonaka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Satoshi Ohta

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Takeshi Kuniga

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirohisa Nesumi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masayuki Kita

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge