Teruyuki Nakanishi
Nihon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teruyuki Nakanishi.
Developmental and Comparative Immunology | 2002
Teruyuki Nakanishi; Uwe Fischer; Johannes Martinus Dijkstra; Satoshi Hasegawa; Tomonori Somamoto; Nobuaki Okamoto; M. Ototake
Fish possess immunoglobulins, major histocompatibility complex (MHC), T-cell receptors, and lymphocyte populations analogous to B and T cells and can evoke specific immune responses against a variety of antigens. However, T-cell subsets have yet to be demonstrated and the information on cell-mediated immunity is limited. Here we briefly review our recent studies on specific cell-mediated immunity, particularly on cytotoxic T-cell function employing isogeneic fish and cell lines. Analyses of the graft-versus host reaction (GVHR) and cell-mediated cytotoxicity (CMC) against allogeneic erythrocytes or cell lines show alloantigen-specific cytotoxicity in clonal ginbuna crucian carp. We also describe specific cytotoxicity against virus-infected cells using clonal ginbuna and a syngeneic cell line. Lastly, we report MHC-restriction in CMC against virus-infected cells using homozygous clonal rainbow trout and trout cell line which share the same MHC class I allele. These studies on CMC strongly suggest the presence of antigen specific cytotoxic T cells in teleosts and functional similarities between the immune systems of fish and higher vertebrates. Experimental model systems established in these studies can be applied to the investigation of protective antigens to induce cell-mediated immunity for the development of fish vaccines.
International Review of Cytology-a Survey of Cell Biology | 2002
Takashi Yada; Teruyuki Nakanishi
Diseases in fish are serious problems for the development of aquaculture. The outbreak of fish disease is largely dependent on environmental and endogenous factors resulting in opportunistic infection. Recent studies, particularly on stress response, have revealed that bidirectional communication between the endocrine and immune systems via hormones and cytokines exists at the level of teleost fish. Recently information on such messengers and receptors has accumulated in fish research particularly at the molecular level. Furthermore, it has become apparent in fish that cells of the immune system produce or express hormones and their receptors and vice versa to exchange information between the two systems. This review summarizes and updates the knowledge on endocrine-immune interactions in fish with special emphasis on the roles of such mediators or receptors for their interactions.
Immunity | 1997
Kazuhiko Okamura; Mitsuru Ototake; Teruyuki Nakanishi; Yoshikazu Kurosawa; Keiichiro Hashimoto
We report the isolation and extensive analysis of highly polymorphic MHC class I genes from sharks (Triakis scyllia), which belong to the most primitive vertebrate group with jaws, the cartilaginous fish. Predicted complete peptide-binding domains showed retention of the critical amino acid residues that would interact with antigenic peptide termini and revealed extensive allelic polymorphisms comparable to those of classic human MHC class I molecules. Mosaic structures were apparent in these domains, suggesting recombinational mechanisms to create allelic diversity. The present study demonstrates the establishment of the basic strategy for antigen-presentation employed by MHC class I molecules and documents complete divergence of two polymorphic MHC classes at a phylogenetically primitive stage of vertebrate evolution.
Immunogenetics | 2003
Yasutoshi Yoshiura; Ikunari Kiryu; Atsushi Fujiwara; Hiroaki Suetake; Yuzuru Suzuki; Teruyuki Nakanishi; Mitsuru Ototake
AbstractWe have isolated and characterized cDNAs and genes for pufferfish, Fugu rubripes, (Fugu) orthologues of mammalian interleukin (IL)-12 subunits (IL-12 p35 and IL-12 p40). The deduced amino acid sequences of the Fugu IL-12 subunits showed homology with mammalian IL-12 subunits (p35: 50.4–58.0% similarity; p40: 51.2–55.4% similarity). Phylogenetic analysis confirmed that Fugu IL-12 p35 and p40 genes cluster with their mammalian counterpart lineages. The genomic organization of each of the Fugu IL-12 subunit genes is similar to that of the corresponding mouse IL-12 subunit genes, although the Fugu genes are very compact due to small intron size. Comparative genomic analysis showed conserved syntenies within the IL-12 p35 and p40 regions between Fugu and human, indicating that the Fugu IL-12 p35 and p40 genes are orthologues for mammalian IL-12 p35 and p40 encoding genes, respectively. Expression of IL-12 p35 mRNA was observed in lymphoid tissues and several non-lymphoid tissues, while expression of IL-12 p40 mRNA was constitutive and nearly ubiquitous. In the spleen and head kidney, expression of IL-12 p35 was induced by polyriboinosinic polyribocytidylic acid [poly(I:C)] and not by lipopolysaccharide (LPS), while expression of IL-12 p40 was constitutive and unresponsive to both poly(I:C) and LPS. These results indicate that IL-12 levels are regulated by production of IL-12 p35 mRNA and suggest that IL-12 in fish may be involved in antiviral defense. This is the first report of the identification and characterization of IL-12 subunit cDNAs and genes in a non-mammalian vertebrate.
Developmental and Comparative Immunology | 2011
Fumio Takizawa; Johannes Martinus Dijkstra; Paul Kotterba; Tomáš Korytář; Holger Kock; Bernd Köllner; Beltran Jaureguiberry; Teruyuki Nakanishi; Uwe Fischer
CD8, belonging to the TCR complex, is the main marker molecule of CTLs. Although CD8 genes have been detected in many fish species, the analysis of teleost CD8+ cells has been limited because of the lack of antibodies. Using newly established mAbs against rainbow trout CD8α, we found high ratios of CD8α+ cells in trout thymus, gill and intestine, but relatively low abundance in pronephros, spleen and blood. Accordingly, tissue sections revealed many CD8α+ cells in thymus, numerous intra- and subepithelial CD8α+ cells in intestine and gill and few scattered CD8α+ cells in spleen and pronephros. In secondary lymphoid tissues, CD8α+ lymphocytes, which did not react with anti-thrombocyte or anti-IgM mAbs, expressed CD8α, CD8β and TCRα, while Ig and CD4 transcripts were found in CD8α⁻ lymphocytes. In contrast, considerable CD4 expression in CD8α+ thymocytes suggests the presence of double-positive early T cells. Highly expressed TCRγ, LAG3 and CTLA4 in CD8α+ lymphocytes imply that they constitute a heterogeneous population different from found in non-mucosal tissues. PHA stimulation resulted in an up-regulation of CTL effector genes (perforin, granulysin and IFN-γ) in CD8α+ pronephrocytes, while both Th1 (IFN-γ) and Th2 (IL-4/13A) cytokines were up-regulated in CD8α⁻ pronephrocytes. Although the basic characteristics of CD8α+ lymphocytes seem similar in teleost and mammals, features such as the low proportion of teleost CD8α+ lymphocytes in blood and their high abundance in respiratory tissue reveal a unique dynamics and distribution.
Aquaculture | 1985
Ryo Suzuki; Takashi Oshiro; Teruyuki Nakanishi
Abstract Gynogenetic diploids were induced in the loach, Misgurnus anguillicaudatus , by applying cold shock to the egg after fertilization with spermatozoa genetically inactivated by ultraviolet-ray irradiation, to examine their survival, growth and fertility. Eggs were obtained from orange phenotype loach (homozygous for a recessive demelanogenesis gene). Spermatozoa were obtained from black phenotype loach (homozygous for a dominant melanogenesis gene), and from common carp, Cyprinus carpio . All hybrids between loach and carp were inviably abnormal. Eggs fertilized with loach or carp spermatozoa irradiated at doses of 6000 and 12000 erg/mm 2 and then treated with cold water (1°C for one hour 4 and 5 min after fertilization developed into embryos with 61–78% survival. About 70–87% of newly-hatched fry were normal in appearance. Gynogenetic fish induced by both loach and carp spermatozoa showed lower rates of survival and growth than did the normal diploid controls. All gynogenetic fish from carp spermatozoa were female and 94.9% of the gynogenetic fish from loach spermatozoa were female. The second gynogenetic offsprings were produced from females selected from both gynogenetic groups.
Developmental and Comparative Immunology | 2011
Hideaki Toda; Yasutaka Saito; Takuhito Koike; Fumio Takizawa; Kyosuke Araki; Takeshi Yabu; Tomonori Somamoto; Hiroaki Suetake; Yuzuru Suzuki; Mitsuru Ototake; Tadaaki Moritomo; Teruyuki Nakanishi
The presence of helper and cytotoxic T cells in fish has been suggested, although T cell subsets have yet to be identified at the cellular level. In order to investigate the functions of CD4 and CD8α positive T cells we attempted to produce and characterize monoclonal antibodies (mAbs) against teleost CD4 and CD8α. Here we report the successful production of mAbs against CD4 and CD8α in clonal ginbuna crucian carp Carassius auratus langsdorfii and the function of CD4 positive T cells. In this study we demonstrate the presence of teleost CD4- and CD8α-positive T cell subsets with morphology, tissue distribution and gene expression similar to those of mammalian CD4- and CD8-positive T lymphocytes. Using mAbs we found that CD4/CD8 double positive T cells are only present in the thymus, suggesting that it is the site of T cell development. We further demonstrated in vitro proliferation of CD4 positive T cells by allogeneic combination of mixed leukocyte culture and antigen-specific proliferation of CD4 positive T cells after in vitro sensitization with OVA. In our previous study we showed that CD8α-positive lymphocytes are the primary cell type showing specific cytotoxicity against allogeneic targets. Collectively, these findings suggest that CD4 and CD8α positive T cells in ginbuna are equivalent to helper and cytotoxic T lymphocytes (CTL) in mammals, respectively. This is the first report to show the characteristics and functions of CD4 positive T cells in fish and these findings shed light into the evolutionary origins and primordial functions of helper T cells.
Immunogenetics | 2008
Maki Ohtani; Nobuhiro Hayashi; Keiichiro Hashimoto; Teruyuki Nakanishi; Johannes Martinus Dijkstra
Interleukins 4 and 13 (IL-4 and IL-13) are related cytokines important for Th2 immune responses and encoded by adjacent genes on human chromosome 5. Efforts were made previously to detect these genes in fish, but research was hampered by a lack of sequence conservation. A Tetraodon nigrovirides (green spotted pufferfish) gene was annotated as IL-4 by Li et al. (Mol Immunol, 44:2078–2086, 2007), but this annotation was not well substantiated. However, the present study concludes that the reported pufferfish gene belongs to the IL-4/13 lineage indeed, while also describing an additional IL-4/13 copy in a paralogous genomic region. Our analyses of IL-4/13 loci in fish describe (1) genomic region history, (2) characteristic intron–exon organization, (3) deduced IL-4/13 molecules for several teleost fish species, (4) IL-4/13 lineage-specific protein motifs including a cysteine pair (pair 1), and (5) computer software predictions of a type I cytokine fold. Teleost IL-4/13 molecules have an additional cysteine pair (pair 2) or remnants thereof, which is absent in mammalian IL-4 and IL-13. We were unable to determine if the teleost IL-4/13 genes are orthologous to either IL-4 or IL-13, or if these mammalian genes separated later in evolution.
Journal of Immunology | 2002
Kazuhiko Aoyagi; Johannes Martinus Dijkstra; Chun Xia; Ikuo Denda; Mitsuru Ototake; Keiichiro Hashimoto; Teruyuki Nakanishi
The classical MHC class I genes have been known to be highly polymorphic in various vertebrates. To date, putative allelic sequences of the classical MHC class I genes in teleost fish have been reported in several studies. However, the establishment of their allelic status has been hampered in most cases by the lack of appropriate genomic information. In the present study, using heterozygous and homozygous fish, we obtained classical-type MHC class I sequences of rainbow trout (Oncorhynchus mykiss) and investigated their allelic relationship by gene amplification and Southern and Northern hybridization analyses. The results indicated that all MHC class I sequences we obtained were derived from a single locus. Based on this, a unique polymorphic nature of the MHC class I locus of rainbow trout has been revealed. The mosaic combination of highly divergent ancient sequences in the peptide-binding domains is notable, and the variable nature around the boundary between the α3 and transmembrane domains is unprecedented.
Developmental and Comparative Immunology | 2009
Hideaki Toda; Yasuhiro Shibasaki; Takuhito Koike; Maki Ohtani; Fumio Takizawa; Mitsuru Ototake; Tadaaki Moritomo; Teruyuki Nakanishi
CD8-positive (CD8(+)) cytotoxic T lymphocytes (CTL) have antigen-specific cytotoxic activity. In fish, however, CTL expressing CD8 on their cell surface have not been identified. In order to characterize the cells involved in specific cell-mediated cytotoxicity in teleosts, we separated and sorted ginbuna kidney leucocytes into CD8alpha(+), CD4(+) and surface IgM (sIgM)(+) cells by magnetic activated cell sorting using monoclonal antibodies and examined their cytotoxic activities. Effector donor ginbuna (OB1 clone) were sensitized by allografting scales from S3N clone fish followed by injection of an allogeneic cell line (CFS) derived from S3N fish. In cytotoxic assays, target cells were labeled with CFSE and cytotoxicity was calculated based on the number of viable target cells using flow cytometry. CD8alpha(+) cells from sensitized OB1 fish showed relatively high cytotoxicity against CFS cells (immunogen) but not against allogeneic CFK cells (third party) nor isogeneic CFO cells. Pre-sensitized sIgM(+) cells exhibited cytotoxicity against not only CFS cells but also CFK cells. However, CD4(+) or CD8alpha(-) CD4(-)sIgM(-) cells as well as cells from non-sensitized fish did not show any significant cytotoxic activity. These results suggest that CD8alpha(+) cells in fish have characteristics similar to those of CTL in mammals, and that the sIgM(+) cells include NK-like cells which non-specifically killed the target cells.