Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teshome Shenkoru is active.

Publication


Featured researches published by Teshome Shenkoru.


PLOS ONE | 2015

Effects of Partial Replacement of Corn with Glycerin on Ruminal Fermentation in a Dual-Flow Continuous Culture System

Pedro Del Bianco Benedeti; Lorrayny Galoro da Silva; Eduardo Marostegan de Paula; Teshome Shenkoru; Marcos Inácio Marcondes; Hugo Fernando Monteiro; Brad Amorati; Yenling Yeh; Simon R. Poulson; A. Faciola

The objective of this study was to evaluate the effects of partially replacing dry ground corn with glycerin on ruminal fermentation using a dual-flow continuous culture system. Six fermenters (1,223 ± 21 ml) were used in a replicated 3x3 Latin square arrangement with three periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. All diets contained 75% concentrate and three dietary glycerin levels (0, 15, and 30% on dry matter basis), totaling six replicates per treatment. Fermenters were fed 72 g of dry matter/d equally divided in two meals/d, at 0800 and 2000 h. Solid and liquid dilution rates were adjusted daily to 5.5 and 11%/h, respectively. On d 8, 9, and 10, samples of 500 ml of solid and liquid digesta effluent were mixed, homogenized, and stored at -20°C. Subsamples of 10 ml were collected and preserved with 0.2 mL of a 50% H2SO4 solution for later determination of NH3-N and volatile fatty acids. Microbial biomass was isolated from fermenters for chemical analysis at the end of each experimental period. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Glycerin levels did not affect apparent digestibility of DM (P Lin. = 0.13; P Quad. = 0.40), OM (P Lin. = 0.72; P Quad. = 0.15), NDF (P Lin. = 0.38; P Quad. = 0.50) and ADF (P Lin. = 0.91; P Quad. = 0.18). Also, glycerin inclusion did not affect true digestibility of DM (P Lin. = 0.35; P Quad. = 0.48), and OM (P Lin. = 0.08; P Quad. = 0.19). Concentrations of propionate (P < 0.01) and total volatile fatty acids (P < 0.01) increased linearly and concentrations of acetate (P < 0.01), butyrate (P = 0.01), iso-valerate (P < 0.01), and total branched-chain volatile fatty acids, as well as the acetate: propionate ratio (P < 0.01) decreased with glycerin inclusion. Linear increases on NH3-N concentration in digesta effluent (P < 0.01) and on NH3-N flow (P < 0.01) were observed due to glycerin inclusion in the diets. Crude protein digestibility (P = 0.04) and microbial N flow (P = 0.04) were greater in the control treatment compared with the other treatments and responded quadratically with glycerin inclusion. Furthermore, the inclusion of glycerin linearly decreased (P = 0.02) non-ammonia N flow. Glycerin levels did not affect the flows of total N (P Lin. = 0.79; P Quad. = 0.35), and dietary N (P Lin. = 0.99; P Quad. = 0.07), as well as microbial efficiency (P Lin. = 0.09; P Quad. = 0.07). These results suggest that partially replacing dry ground corn with glycerin may change ruminal fermentation, by increasing total volatile fatty acids, and propionate concentration without affecting microbial efficiency, which may improve glucogenic potential of beef cattle diets.


Journal of Dairy Science | 2017

Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems

Eduardo Marostegan de Paula; Hugo Fernando Monteiro; Lorrayny Galoro da Silva; Pedro Del Bianco Benedeti; J.L.P. Daniel; Teshome Shenkoru; G.A. Broderick; A. Faciola

Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH4) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH3-N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM diet had a greater gas pool size than both CM diets. The SBM diet increased in vitro OM digestibility; however, it also tended to increase CH4 production (mM and g/kg of DM) compared with both CM diets. Based on the results of this study, CM with RUP varying from 38 to 50% of crude protein does not affect ruminal fermentation, nutrient digestion, and microbial growth when CM is included at up to 34% of the diet.


Journal of Dairy Science | 2018

Effect of replacing calcium salts of palm oil with camelina seed at 2 dietary ether extract levels on digestion, ruminal fermentation, and nutrient flow in a dual-flow continuous culture system

V.L.N. Brandao; X. Dai; Eduardo Marostegan de Paula; L.G. Silva; Marcos Inácio Marcondes; Teshome Shenkoru; Simon R. Poulson; A.P. Faciola

Camelina is a drought- and salt-tolerant oil seed, which in total ether extract (EE) contains up to 74% polyunsaturated fatty acids. The objective of this study was to assess the effects of replacing calcium salts of palm oil (Megalac, Church & Dwight Co. Inc., Princeton, NJ) with camelina seed (CS) on ruminal fermentation, digestion, and flows of fatty acids (FA) and AA in a dual-flow continuous culture system when supplemented at 5 or 8% dietary EE. Diets were randomly assigned to 8 fermentors in a 2 × 2 factorial arrangement of treatments in a replicated 4 × 4 Latin square design, with four 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were (1) calcium salts of palm oil supplementation at 5% EE (MEG5); (2) calcium salts of palm oil supplementation at 8% EE (MEG8); (3) 7.7% CS supplementation at 5% EE (CS5); and (4) 17.7% CS supplementation at 8% EE (CS8). Diets contained 55% orchardgrass hay, and fermentors were fed 72 g of dry matter/d. On d 8, 9, and 10 of each period, digesta effluent samples were taken for ruminal NH3, volatile fatty acids, nitrogen metabolism analysis, and long-chain FA and AA flows. Statistical analysis was performed using the MIXED procedure (SAS Institute Inc., Cary, NC). We detected an interaction between FA source and dietary EE level for acetate, where MEG8 had the greatest molar proportion of acetate. Molar proportions of propionate were greater and total volatile fatty acids were lower on CS diets. Supplementation of CS decreased overall ruminal nutrient true digestibility, but dietary EE level did not affect it. Diets containing CS had greater biohydrogenation of 18:2 and 18:3; however, biohydrogenation of 18:1 was greater in MEG diets. Additionally, CS diets had greater ruminal concentrations of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid. Dietary EE level at 8% negatively affected flows of NH3-N (g/d), nonammonia N, and bacterial N as well as the overall AA outflow. However, treatments had minor effects on individual ruminal AA digestibility. The shift from acetate to propionate observed on diets containing CS may be advantageous from an energetic standpoint. Moreover, CS diets had greater ruminal outflow of trans-10/11 18:1 and cis-9,trans-11 conjugated linoleic acid than MEG diets, suggesting a better FA profile available for postruminal absorption. However, dietary EE at 8% was deleterious to overall N metabolism and AA outflow, indicating that CS can be fed at 5% EE without compromising N metabolism.


PLOS ONE | 2016

Effects of Static or Oscillating Dietary Crude Protein Levels on Fermentation Dynamics of Beef Cattle Diets Using a Dual-Flow Continuous Culture System

Paloma de Melo Amaral; Lays Débora Silva Mariz; Pedro Del Bianco Benedeti; Lorrayny Galoro da Silva; Eduardo Marostegan de Paula; Hugo Fernando Monteiro; Teshome Shenkoru; S. A. Santos; Simon R. Poulson; A. Faciola

The objective of this study was to evaluate the effects of increasing dietary crude protein (CP) levels and also comparing the effects of static versus oscillating dietary CP on ruminal nutrient digestibility, ruminal fermentation, nitrogen (N) metabolism, and microbial efficiency in beef cattle diets using a dual-flow continuous culture system. Eight fermenters (1,223 ± 21 mL) were used in a replicated 4 x 4 Latin square design with periods lasting 12 d each (8 d for adaptation and 4 d for sampling). Dietary treatments were: 1) 10% CP, 2) 12% CP, 3) 14% CP, and 4) 10 and 14% CP diets oscillating at 48-h intervals. Experimental diets consisted of 50% orchard hay and 50% concentrate. Fermenters were fed 72 g/d and solid and liquid dilution rates were adjusted to 5.5 and 11%/h, respectively. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Apparent and true ruminal digestibilities of dry matter and organic matter were not affected (P > 0.05) by increasing dietary CP, nor by oscillating dietary CP. Total volatile fatty acids concentration and molar proportions of acetate, propionate, butyrate, valerate, iso-butyrate and iso-valerate were not affected (P > 0.05) by increasing or oscillating dietary CP. Ruminal NH3-N concentration increased linearly (P < 0.01) in response to increasing dietary CP. Total N, non-ammonia N, and rumen undegraded protein flows did not differ among treatments or between oscillating dietary CP and static 12% CP. Microbial N and NH3-N flows and microbial efficiency did not differ when comparing oscillating versus static CP (P > 0.05). However, there was a quadratic effect (P < 0.05) for these variables when dietary CP was increased. These results indicate that either ruminal microorganisms do not respond to oscillating CP levels or are capable of coping with 48-h periods of undernourishment.


Rangeland Ecology & Management | 2011

Plant Age and Growing Season Nutritional Content Relationships of Three Artemisia tridentata Subspecies

Barry L. Perryman; Teshome Shenkoru; Leroy B. Bruce; Hussein S. Hussein

Abstract The effect of plant age on growing season chemical compositions and rumen fermentation characteristics was determined for three subspecies of big sagebrush: basin (Artemisia tridentata [Nutt.] subsp. tridentata), mountain (A. tridentata subsp. vaseyana [Rybd.] Beetle), and Wyoming (A. tridentata subsp. wyomingensis [Beetle and Young]). In vitro dry matter (IVDMD) and organic matter (IVOMD) disappearance, ammonia nitrogen (NH3N), and volatile fatty acid (VFA) content were determined at the end of two fermentation periods (24 h and 48 h) by combining rumen inocula with age-classified vegetative samples from each sagebrush subspecies. An additional one-way analysis of variance was performed to investigate potential differences among subspecies in IVDMD, IVOMD, total VFA, and NH3N following a 48-h fermentation period. Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) components were also compared among sagebrush subspecies. Age class responses were variable across the spectrum of sagebrush subspecies and response variables. Where plant age effects were indicated, the small numeric differences probably have little biological or ecological significance. Mountain sagebrush was lower in IVOMD and total VFA concentrations (P < 0.0001) than basin and Wyoming. NH3N concentration and CP were higher (P < 0.0001) in basin sagebrush than the other two subspecies, while Wyoming sagebrush was higher in NDF, ADF, and ADL than basin and mountain subspecies (P < 0.0001). NH3N concentration for all three subspecies was lower than the minimum level (20 mg · 100 mL−1) required for uninhibited rumen activity. Overall, this research questions the contention that older sagebrush plants offer less nutritional value than younger ones, at least for growing season conditions. The results also provide information that can be utilized in designing supplementation strategies for domestic animals on diets with characteristically high utilization of big sagebrush.


PLOS ONE | 2018

Does partial replacement of corn with glycerin in beef cattle diets affect in vitro ruminal fermentation, gas production kinetic, and enteric greenhouse gas emissions?

Pedro Del Bianco Benedeti; Mozart Alves Fonseca; Teshome Shenkoru; Marcos Inácio Marcondes; Eduardo Marostegan de Paula; Lorrayny Galoro da Silva; A.P. Faciola

Five in vitro experiments were conducted with the following objectives: 1) To evaluate the ruminal fermentation of three different single ingredients: corn, glycerin, and starch (Exp. 1 and 2); 2) To assess effects of partially replacing corn with glycerin in beef cattle diets on ruminal fermentation pattern (Exp. 3 and 4); and 3) To evaluate the effects of glycerin inclusion on the extension of ruminal DM digestibility of feeds with high (orchard hay) and low (corn) fiber content (Exp. 5). For Exp. 1 and 2, two in vitro systems (24-bottle AnkomRF and 20-serum bottles) were used in four consecutive fermentation batches to evaluate gas production (GP), fermentation profiles, enteric methane (CH4), and carbon dioxide (CO2) of corn, glycerin, and starch. The 24 h total GP, acetate concentration, and acetate: propionate ratio decreased only when glycerin was added to the diet (P < 0.01). The 48-h total GP and metabolizable energy were greatest for corn (P < 0.01), and similar between glycerin and starch. The starch treatment had the lowest total volatile fatty acids concentration (P = 0.01). Glycerin had greatest CH4 production, lag time, and maximum gas volume of the first pool (P < 0.05). However, the maximum gas volume of the second pool was greatest for corn (P < 0.05), and similar between glycerin and starch. The starch treatment had the greatest specific rates of digestion for first and second pools (P < 0.05). Production of CO2 (mL/g) was greater for corn (P < 0.01), but similar for glycerin and starch. For Exp. 3 and 4, the same systems were used to evaluate four different levels of glycerin [0, 100, 200, and 300 g/kg of dry matter (DM)] replacing corn in beef cattle finishing diets. Glycerin levels did not affect 24 and 48 h total GP, CH4, and CO2 (P > 0.05). The inclusion of glycerin linearly decreased acetate concentration (P = 0.03) and acetate: propionate ratio (P = 0.04). For Exp. 5, two DaisyII incubators were used to evaluate the in vitro dry matter digestibility (IVDMD) of the following treatments: orchard hay; corn; orchard hay + glycerin; and corn + glycerin. Glycerin inclusion decreased orchard hay IVDMD (P < 0.01) but did not affect corn IVDMD (P > 0.05). We concluded that, under these experimental conditions, glycerin has similar energy efficiency when used in replacement of corn and included at up to 300 g/kg in beef cattle diets.


Journal of Animal Science | 2018

Nutritional evaluation and ruminal fermentation patterns of kochia compared with alfalfa and orchardgrass hays and ephedra and cheatgrass compared with orchardgrass hay as alternative arid-land forages for beef cattle in two dual-flow continuous culture system experiments1

L.G. Silva; Cláudia Batista Sampaio; Eduardo Marostegan de Paula; Teshome Shenkoru; V.L.N. Brandao; X. Dai; Barry L. Perryman; A.P. Faciola

The objective was to evaluate the ruminal fermentation patterns of forage kochia (FK) compared with alfalfa hay (AH) and orchardgrass hay (OH) (Exp. 1), and ephedra (EPH) and immature cheatgrass (CG) compared with OH (Exp. 2), using a dual-flow continuous culture system. Two in vitro experiments were conducted, and in each experiment, treatments were randomly assigned to six dual-flow fermenters (1,223 ± 21 mL) in a replicated 3 × 3 Latin square design, with three consecutive periods of 10 d each, consisting of 7 d for diet adaptation and 3 d for sample collection. Each fermenter was fed a total of 72 g/d (DM basis) and treatments were as follows: Exp. 1: 1) 100% OH, 2) 100% AH, and 3) 100% dried FK. Exp. 2: 1) 100% OH, 2) 100% dried CG, and 3) 100% dried EPH. On day 8, 9, and 10, samples of solid and liquid effluent from each fermenter were taken for digestibility analysis, and subsamples were collected for NH3-N, VFA, and bacterial N determinations. Data were analyzed using the MIXED procedure of SAS. In Exp. 1, treatments did not affect DM, OM, and NDF digestibilities, total VFA and molar proportions of acetate, propionate, butyrate, and branched-chain VFA. True CP digestibility, ruminal NH3-N concentration, and total N, NH3-N, NAN, and dietary N flows (g/d) were greater (P < 0.05) for FK compared with the other forages. However, treatments did not affect bacterial efficiency. In Exp. 2, DM, OM, and CP digestibilities were greater (P = 0.01) for EPH, and NDF digestibility was greater (P < 0.05) for EPH and CG compared with OH. Ephedra had the highest (P < 0.05) pH and acetate:propionate ratio and the lowest (P < 0.05) total VFA concentration. Total VFA, ruminal NH3-N concentration, and NH3-N flow (g/d) were highest (P < 0.05) for CG. Total N flow and bacterial efficiency were highest (P < 0.05) for OH and CG, while the flows (g/d) of NAN, bacterial N, and dietary N were greater (P < 0.05) for OH compared with the other forages. Results indicate that when compared with AH and OH (Exp. 1), FK has similar ruminal fermentation patterns and may be an adequate alternative for beef cattle producers. Furthermore, when compared with OH (Exp. 2), immature CG may also be an adequate forage alternative. This is especially important for areas in which conventional forages may not grow well such as the U.S. arid-land. However, EPH should not be used as the sole forage due to its poor ruminal fermentation as evidenced by the lowest total VFA concentration and propionate molar proportion.


The Professional Animal Scientist | 2012

Nutritional properties of windrowed and standing basin wildrye over time

B. Bruce; Barry L. Perryman; Teshome Shenkoru; K. Conley; J. Wilker

windrows. Crude protein was consistently greater in the windrow, and rapidly decreased in the standing crop. The ADF content was consistently lower in the windrow. Phosphorus was lower in the windrow in July, maintained that level, becoming greater in subsequent months than in standing forage in 2005. The NDF/ADF ratio was consistently greater in the windrow. Neutral detergent fiber, manganese, and sodium showed no difference between standing crop and windrow. Magnesium and calcium decreased in the windrow compared with standing crop. Potassium, zinc, iron, and copper were greater in the windrow. Standing crop production was 5 to 6 times greater in the burned area in both sample years (2005 and 2009). In prescribed burn areas, standing crop yields were increased over nonburned areas, and windrowed basin wildrye provided greater nutritional quality over time than standing basin wildrye forage.


Journal of Animal Production | 2006

Feed intake, water balance and water economy in highland sheep fed teff (Eragrostis teff) straw and supplemented with graded levels of leucaena leucocephala

Z. Sisay; Teshome Shenkoru; Azage Tegegne; Y. Wolde Amanuel


Animal Feed Science and Technology | 2000

Feed intake, sperm output and seminal characteristics of Ethiopian highland sheep supplemented with different levels of leucaena (Leucaena leucocephala) leaf hay.

Negussie Dana; Azage Tegegne; Teshome Shenkoru

Collaboration


Dive into the Teshome Shenkoru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge