Tess Pallister
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tess Pallister.
Genome Biology | 2016
Michelle Beaumont; Julia K. Goodrich; Matthew A. Jackson; Idil Yet; Emily R. Davenport; Sara Vieira-Silva; Justine W. Debelius; Tess Pallister; Massimo Mangino; Jeroen Raes; Rob Knight; Andrew G. Clark; Ruth E. Ley; Tim D. Spector; Jordana T. Bell
BackgroundVariation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures.ResultsWe profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome and obesity.ConclusionsOur results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with clear potential for prevention and novel therapies.
International Journal of Obesity | 2017
Cristina Menni; Matthew A. Jackson; Tess Pallister; Claire J. Steves; Tim D. Spector; Ana M. Valdes
Background:Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing the human body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change in body weight over time and gut microbiome composition.Methods:We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females from TwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjusted for caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier.Results:Less than half of the variation in long-term weight change was found to be heritable (h2=0.41 (0.31, 0.47)). Gut microbiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake. Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates, family relatedness and multiple testing (false discovery rate <0.05). OTUs associated with lower long-term weight gain included those assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioides species OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels of diversity.Conclusions:High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energy metabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders.
PLOS ONE | 2015
Clara Barrios; Michelle Beaumont; Tess Pallister; Judith Villar; Julia K. Goodrich; Andrew G. Clark; Julio Pascual; Ruth E. Ley; Tim D. Spector; Jordana T. Bell; Cristina Menni
Introduction Several circulating metabolites derived from bacterial protein fermentation have been found to be inversely associated with renal function but the timing and disease severity is unclear. The aim of this study is to explore the relationship between indoxyl-sulfate, p-cresyl-sulfate, phenylacetylglutamine and gut-microbial profiles in early renal function decline. Results Indoxyl-sulfate (Beta(SE) = -2.74(0.24); P = 8.8x10-29), p-cresyl-sulfate (-1.99(0.24), P = 4.6x10-16), and phenylacetylglutamine(-2.73 (0.25), P = 1.2x10-25) were inversely associated with eGFR in a large population base cohort (TwinsUK, n = 4439) with minimal renal function decline. In a sub-sample of 855 individuals, we analysed metabolite associations with 16S gut microbiome profiles (909 profiles, QIIME 1.7.0). Three Operational Taxonomic Units (OTUs) were significantly associated with indoxyl-sulfate and 52 with phenylacetylglutamine after multiple testing; while one OTU was nominally associated with p-cresyl sulfate. All 56 microbial members belong to the order Clostridiales and are represented by anaerobic Gram-positive families Christensenellaceae, Ruminococcaceae and Lachnospiraceae. Within these, three microbes were also associated with eGFR. Conclusions Our data suggest that indoxyl-sulfate, p-cresyl-sulfate and phenylacetylglutamine are early markers of renal function decline. Changes in the intestinal flora associated with these metabolites are detectable in early kidney disease. Future efforts should dissect this relationship to improve early diagnostics and therapeutics strategies.
PLOS ONE | 2016
Tess Pallister; Amy Jennings; Robert P. Mohney; Darioush Yarand; Massimo Mangino; Aedin Cassidy; Alex J. MacGregor; Tim D. Spector; Cristina Menni
Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake) with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]). Significant results were then replicated (non-targeted: P<0.05; targeted: same direction) in the MZ discordant twin group and results from both analyses meta-analyzed. We identified and replicated 180 significant associations with 39 food groups (P<1.17x10-6), overall consisting of 106 different metabolites (74 known and 32 unknown), including 73 novel associations. In particular we identified trans-4-hydroxyproline as a potential marker of red meat intake (0.075[0.009]; P = 1.08x10-17), ergothioneine as a marker of mushroom consumption (0.181[0.019]; P = 5.93x10-22), and three potential markers of fruit consumption (top association: apple and pears): including metabolites derived from gut bacterial transformation of phenolic compounds, 3-phenylpropionate (0.024[0.004]; P = 1.24x10-8) and indolepropionate (0.026[0.004]; P = 2.39x10-9), and threitol (0.033[0.003]; P = 1.69x10-21). With the largest nutritional metabolomics dataset to date, we have identified 73 novel candidate biomarkers of food intake for potential use in nutritional epidemiological studies. We compiled our findings into the DietMetab database (http://www.twinsuk.ac.uk/dietmetab-data/), an online tool to investigate our top associations.
International Journal of Cardiology | 2016
Amy Jennings; Alex J. MacGregor; Tess Pallister; Tim D. Spector; Aedin Cassidy
Background Conflicting data exist on the impact of dietary and circulating levels of branched chain amino acids (BCAA) on cardiometabolic health and it is unclear to what extent these relations are mediated by genetics. Methods In a cross-sectional study of 1997 female twins we examined associations between BCAA intake, measured using food frequency-questionnaires, and a range of markers of cardiometabolic health, including DXA-measured body fat, blood pressure, HOMA-IR, high-sensitivity C-reactive protein (hs-CRP) and lipids. We also measured plasma concentrations of BCAA and known metabolites of amino acid metabolism using untargeted mass spectrometry. Using a within-twin design, multivariable analyses were used to compare the associations between BCAA intake and endpoints of cardiometabolic health, independently of genetic confounding. Results Higher BCAA intake was significantly associated with lower HOMA-IR (− 0.1, P-trend 0.02), insulin (− 0.5 μU/mL, P-trend 0.03), hs-CRP − 0.3 mg/L, P-trend 0.01), systolic blood pressure (− 2.3 mmHg, P-trend 0.01) and waist-to-height ratio (− 0.01, P-trend 0.04), comparing extreme quintiles of intake. These associations persisted in within-pair analysis for monozygotic twins for insulin resistance (P < 0.01), inflammation (P = 0.03), and blood pressure (P = 0.04) suggesting independence from genetic confounding. There was no association between BCAA intake and plasma concentrations, although two metabolites previously associated with obesity were inversely associated with BCAA intake (alpha-hydroxyisovalerate and trans-4-hydroxyproline). Conclusions Higher intakes of BCAA were associated, independently of genetics, with lower insulin resistance, inflammation, blood pressure and adiposity-related metabolites. The BCAA intake associated with our findings is easily achievable in the habitual diet.
Twin Research and Human Genetics | 2015
Tess Pallister; Mastaneh Sharafi; Genevieve Lachance; Nicola Pirastu; Robert P. Mohney; Alex J. MacGregor; Edith J. M. Feskens; Valerie B. Duffy; Tim D. Spector; Cristina Menni
Food liking-disliking patterns may strongly influence food choices and health. Here we assess: (1) whether food preference patterns are genetic/environmentally driven; and (2) the relationship between metabolomics profiles and food preference patterns in a large population of twins. 2,107 individuals from TwinsUK completed an online food and lifestyle preference questionnaire. Principle components analysis was undertaken to identify patterns of food liking-disliking. Heritability estimates for each liking pattern were obtained by structural equation modeling. The correlation between blood metabolomics profiles (280 metabolites) and each food liking pattern was assessed in a subset of 1,491 individuals and replicated in an independent subset of monozygotic twin pairs discordant for the liking pattern (65 to 88 pairs). Results from both analyses were meta-analyzed. Four major food-liking patterns were identified (Fruit and Vegetable, Distinctive Tastes, Sweet and High Carbohydrate, and Meat) accounting for 26% of the total variance. All patterns were moderately heritable (Fruit and Vegetable, h(2)[95% CI]: 0.36 [0.28; 0.44]; Distinctive Tastes: 0.58 [0.52; 0.64]; Sweet and High Carbohydrate: 0.52 [0.45, 0.59] and Meat: 0.44 [0.35; 0.51]), indicating genetic factors influence food liking-disliking. Overall, we identified 14 significant metabolite associations (Bonferroni p < 4.5 × 10(-5)) with Distinctive Tastes (8 metabolites), Sweet and High Carbohydrate (3 metabolites), and Meat (3 metabolites). Food preferences follow patterns based on similar taste and nutrient characteristics and these groupings are strongly determined by genetics. Food preferences that are strongly genetically determined (h(2) ≥ 0.40), such as for meat and distinctive-tasting foods, may influence intakes more substantially, as demonstrated by the metabolomic associations identified here.
Scientific Reports | 2017
Cristina Menni; Jonas Zierer; Tess Pallister; Matthew A. Jackson; Tao Long; Robert P. Mohney; Claire J. Steves; Tim D. Spector; Ana M. Valdes
Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders (DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations remained significant after adjusting for dietary fibre intake. We found even stronger associations between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10−7). Some of the associations with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and microbiome composition independent of dietary fibre intake, particularly with bacteria of the Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve the microbiome composition.
Scientific Reports | 2017
Tess Pallister; Matthew A. Jackson; Tiphaine Martin; Jonas Zierer; Amy Jennings; Robert P. Mohney; Alex J. MacGregor; Claire J. Steves; Aedin Cassidy; Tim D. Spector; Cristina Menni
Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health.
Scientific Reports | 2016
Jonas Zierer; Tess Pallister; Pei-Chien Tsai; Jan Krumsiek; Jordana T. Bell; Gordan Lauc; Tim D. Spector; Cristina Menni; Gabi Kastenmüller
Although association studies have unveiled numerous correlations of biochemical markers with age and age-related diseases, we still lack an understanding of their mutual dependencies. To find molecular pathways that underlie age-related diseases as well as their comorbidities, we integrated aging markers from four different high-throughput omics datasets, namely epigenomics, transcriptomics, glycomics and metabolomics, with a comprehensive set of disease phenotypes from 510 participants of the TwinsUK cohort. We used graphical random forests to assess conditional dependencies between omics markers and phenotypes while eliminating mediated associations. Applying this novel approach for multi-omics data integration yields a model consisting of seven modules that represent distinct aspects of aging. These modules are connected by hubs that potentially trigger comorbidities of age-related diseases. As an example, we identified urate as one of these key players mediating the comorbidity of renal disease with body composition and obesity. Body composition variables are in turn associated with inflammatory IgG markers, mediated by the expression of the hormone oxytocin. Thus, oxytocin potentially contributes to the development of chronic low-grade inflammation, which often accompanies obesity. Our multi-omics graphical model demonstrates the interconnectivity of age-related diseases and highlights molecular markers of the aging process that might drive disease comorbidities.
International Journal of Obesity | 2017
Tess Pallister; Matthew A. Jackson; Tiphaine Martin; Craig A. Glastonbury; Amy Jennings; Michelle Beaumont; Robert P. Mohney; Kerrin S. Small; Alex J. MacGregor; Claire J. Steves; Aidan Cassidy; Tim D. Spector; Cristina Menni; Ana M. Valdes
Background/Objectives:Higher visceral fat mass (VFM) is associated with an increased risk for developing cardio-metabolic diseases. The mechanisms by which an unhealthy diet pattern may influence visceral fat (VF) development has yet to be examined through cutting-edge multi-omic methods. Therefore, our objective was to examine the dietary influences on VFM and identify gut microbiome and metabolite profiles that link food intakes to VFM.Subjects/Methods:In 2218 twins with VFM, food intake and metabolomics data available we identified food intakes most strongly associated with VFM in 50% of the sample, then constructed and tested the ‘VFM diet score’ in the remainder of the sample. Using linear regression (adjusted for covariates, including body mass index and total fat mass), we investigated associations between the VFM diet score, the blood metabolomics profile and the fecal microbiome (n=889), and confirmed these associations with VFM. We replicated top findings in monozygotic (MZ) twins discordant (⩾1 s.d. apart) for VFM, matched for age, sex and the baseline genetic sequence.Results:Four metabolites were associated with the VFM diet score and VFM: hippurate, alpha-hydroxyisovalerate, bilirubin (Z,Z) and butyrylcarnitine. We replicated associations between VFM and the diet score (beta (s.e.): 0.281 (0.091); P=0.002), butyrylcarnitine (0.199 (0.087); P=0.023) and hippurate (−0.297 (0.095); P=0.002) in VFM-discordant MZ twins. We identified a single species, Eubacterium dolichum to be associated with the VFM diet score (0.042 (0.011), P=8.47 × 10−5), VFM (0.057 (0.019), P=2.73 × 10−3) and hippurate (−0.075 (0.032), P=0.021). Moreover, higher blood hippurate was associated with elevated adipose tissue expression neuroglobin, with roles in cellular oxygen homeostasis (0.016 (0.004), P=9.82x10−6).Conclusions:We linked a dietary VFM score and VFM to E. dolichum and four metabolites in the blood. In particular, the relationship between hippurate, a metabolite derived from microbial metabolism of dietary polyphenols, and reduced VFM, the microbiome and increased adipose tissue expression of neuroglobin provides potential mechanistic insight into the influence of diet on VFM.