Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tessa Bellamy Knox is active.

Publication


Featured researches published by Tessa Bellamy Knox.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78

Marina S. Gorbatyuk; Tessa Bellamy Knox; Matthew M. LaVail; Oleg Gorbatyuk; Syed Mohammed Noorwez; William W. Hauswirth; Jonathan H. Lin; Nicholas Muzyczka; Alfred S. Lewin

The P23H mutation within the rhodopsin gene (RHO) causes rhodopsin misfolding, endoplasmic reticulum (ER) stress, and activates the unfolded protein response (UPR), leading to rod photoreceptor degeneration and autosomal dominant retinitis pigmentosa (ADRP). Grp78/BiP is an ER-localized chaperone that is induced by UPR signaling in response to ER stress. We have previously demonstrated that BiP mRNA levels are selectively reduced in animal models of ADRP arising from P23H rhodopsin expression at ages that precede photoreceptor degeneration. We have now overexpressed BiP to test the hypothesis that this chaperone promotes the trafficking of P23H rhodopsin to the cell membrane, reprograms the UPR favoring the survival of photoreceptors, blocks apoptosis, and, ultimately, preserves vision in ADRP rats. In cell culture, increasing levels of BiP had no impact on the localization of P23H rhodopsin. However, BiP overexpression alleviated ER stress by reducing levels of cleaved pATF6 protein, phosphorylated eIF2α and the proapoptotic protein CHOP. In P23H rats, photoreceptor levels of cleaved ATF6, pEIF2α, CHOP, and caspase-7 were much higher than those of wild-type rats. Subretinal delivery of AAV5 expressing BiP to transgenic rats led to reduction in CHOP and photoreceptor apoptosis and to a sustained increase in electroretinogram amplitudes. We detected complexes between BiP, caspase-12, and the BH3-only protein BiK that may contribute to the antiapoptotic activity of BiP. Thus, the preservation of photoreceptor function resulting from elevated levels of BiP is due to suppression of apoptosis rather than to a promotion of rhodopsin folding.


Parasites & Vectors | 2014

An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region

Tessa Bellamy Knox; Elijah O Juma; Eric Ochomo; Helen Pates Jamet; Laban Ndungo; Patrick Chege; Nabie Bayoh; Raphael N’Guessan; Riann Christian; Richard H. Hunt; Maureen Coetzee

BackgroundMalaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper.MethodsA systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper (http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data.ResultsLiterature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010–2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in malaria vectors in Africa.ConclusionsThe increasing pyrethroid and DDT resistance in Anopheles in the Afrotropical region is alarming. Urgent attention should be afforded to testing An. funestus populations especially for metabolic resistance mechanisms. IR Mapper is a useful tool for investigating temporal and spatial trends in Anopheles resistance to support the pragmatic use of insecticidal interventions.


Malaria Journal | 2015

Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward

Abraham Mnzava; Tessa Bellamy Knox; Emmanuel A. Temu; Anna Trett; Christen Fornadel; Janet Hemingway; Melanie Renshaw

In recent years, there has been an increase in resistance of malaria vectors to insecticides, particularly to pyrethroids which are widely used in insecticide-treated nets. The Global Plan for Insecticide Resistance Management in malaria vectors (GPIRM), released in May 2012, is a collective strategy for the malaria community to tackle this challenge. This review outlines progress made to date and the challenges experienced in the implementation of GPIRM, and outlines focus areas requiring urgent attention. Whilst there has been some advancement, uptake of GPIRM at the national level has generally been poor for various reasons, including limited availability of vector control tools with new mechanisms of action as well as critical financial, human and infrastructural resource deficiencies. There is an urgent need for a global response plan to address these deficits and ensure the correct and efficient use of available tools in order to maintain the effectiveness of current vector control efforts whilst novel vector control tools are under development. Emphasis must be placed on enhancing national capacities (such as human and infrastructural resources) to enable efficient monitoring and management of insecticide resistance, and to support availability and accessibility of appropriate new vector control products. Lack of action by the global community to address the threat of insecticide resistance is unacceptable and deprives affected communities of their basic right of universal access to effective malaria prevention. Aligning efforts and assigning the needed resources will ensure the optimal implementation of GPIRM with the ultimate goal of maintaining effective malaria vector control.


Malaria Journal | 2015

Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation.

Immo Kleinschmidt; Abraham Mnzava; Hmooda Toto Kafy; Charles M. Mbogo; Adam Ismail Bashir; Jude D. Bigoga; Alioun Adechoubou; K. Raghavendra; Tessa Bellamy Knox; Elfatih M Malik; Zinga José Nkuni; Nabie Bayoh; Eric Ochomo; Etienne Fondjo; Celestin Kouambeng; Herman Parfait Awono-Ambene; Josiane Etang; Martin Akogbéto; Rajendra M Bhatt; Dipak Kumar Swain; Teresa Kinyari; Kiambo Njagi; Lawrence Muthami; Krishanthi Subramaniam; John S. Bradley; Philippa West; Achile Massougbodji; Mariam Okê-Sopoh; Aurore Hounto; Khalid A Elmardi

BackgroundProgress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper.MethodsMalaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively.ResultsCohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016.DiscussionThe paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Acta Tropica | 2014

Synergist bioassays: A simple method for initial metabolic resistance investigation of field Anopheles gambiae s.l. populations

Mouhamadou Chouaibou; Georgina Bingham Zivanovic; Tessa Bellamy Knox; Helen Pates Jamet; Bassirou Bonfoh

Graphical abstract Bioassays with synergists can provide a quick and easy basis for initial characterization of resistant mosquito populations, without the need of preserved specimens, expensive equipment and substrates or specialized expertise. Pictograme: Knock down time responses of a resistant Anopheles gambiae population from Tiassalé to deltamethrin. A significant reduction in knockdown time was observed after 20 min pre-exposure to the P450 inhibitor (PBO). KDT50 shifted from 63.32 min for deltamethrin alone to 21.86 min for deltamethrin + PBO.


Emerging Infectious Diseases | 2017

Insecticide-Treated Nets and Protection against Insecticide-Resistant Malaria Vectors in Western Kenya

Eric Ochomo; Mercy Chahilu; Jackie Cook; Teresa Kinyari; Nabie Bayoh; Philippa West; Luna Kamau; Aggrey Osangale; Maurice Ombok; Kiambo Njagi; Evan Mathenge; Lawrence Muthami; Krishanthi Subramaniam; Tessa Bellamy Knox; Abraham Mnavaza; Martin J. Donnelly; Immo Kleinschmidt; Charles M. Mbogo

Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9–2.5) infections/person-year and 2.8 (95% CI 2.5–3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42–0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35–0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation.

Hmooda Toto Kafy; Bashir Adam Ismail; Abraham Mnzava; Jonathan Lines; Mogahid Shiekh Eldin Abdin; Jihad Sulieman Eltaher; Anuar Osman Banaga; Philippa West; John S. Bradley; Jackie Cook; Brent Thomas; Krishanthi Subramaniam; Janet Hemingway; Tessa Bellamy Knox; Elfatih M Malik; Joshua Yukich; Martin J. Donnelly; Immo Kleinschmidt

Significance Emerging insecticide resistance in malaria vectors could presage a catastrophic rebound in malaria morbidity and mortality. In areas of moderate levels of resistance to pyrethroids, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) with a carbamate insecticide were significantly more effective than IRS with pyrethroid insecticide. The impact on the effectiveness of LLINs could not be quantified. The incremental cost of using a carbamate insecticide to which vectors are susceptible was US


Parasites & Vectors | 2018

The bionomics of the malaria vector Anopheles rufipes Gough, 1910 and its susceptibility to deltamethrin insecticide in North Cameroon

Parfait Awono-Ambene; Josiane Etang; Christophe Antonio-Nkondjio; Cyrille Ndo; Wolfgang Ekoko Eyisap; Michael Piameu; Elysée S. Mandeng; Ranaise L. Mbakop; Jean Claude Toto; Salomon Patchoké; Abraham Mnzava; Tessa Bellamy Knox; Martin J. Donnelly; Etienne Fondjo; Jude D. Bigoga

0.65 per person protected per year, which is considered acceptable by international standards. While the WHO recommends that different interventions, where possible, should use different insecticide classes, these data alone should not be used as the basis for a policy change in vector control interventions. Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


Lancet Infectious Diseases | 2018

Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study

Immo Kleinschmidt; John S. Bradley; Tessa Bellamy Knox; Abraham Mnzava; Hmooda Toto Kafy; Charles M. Mbogo; Bashir Adam Ismail; Jude D. Bigoga; Alioun Adechoubou; K. Raghavendra; Jackie Cook; Elfatih Mohamed Malik; Zinga José Nkuni; Michael Macdonald; Nabie Bayoh; Eric Ochomo; Etienne Fondjo; Herman Parfait Awono-Ambene; Josiane Etang; Martin Akogbéto; Rajendra M Bhatt; Mehul Kumar Chourasia; Dipak Kumar Swain; Teresa Kinyari; Krishanthi Subramaniam; Achille Massougbodji; Mariam Okê-Sopoh; A. Ogouyèmi-Hounto; Celestin Kouambeng; Mujahid Sheikhedin Abdin

BackgroundFollowing the recent discovery of the role of Anopheles rufipes Gough, 1910 in human malaria transmission in the northern savannah of Cameroon, we report here additional information on its feeding and resting habits and its susceptibility to the pyrethroid insecticide deltamethrin.MethodsFrom 2011 to 2015, mosquito samples were collected in 38 locations across Garoua, Mayo Oulo and Pitoa health districts in North Cameroon. Adult anophelines collected using outdoor clay pots, window exit traps and indoor spray catches were checked for feeding status, blood meal origin and Plasmodium circumsporozoite protein. The susceptibility of field-collected An. rufipes to deltamethrin was assessed using WHO standard procedures.ResultsOf 9327 adult Anopheles collected in the 38 study sites, An. rufipes (6.5%) was overall the fifth most abundant malaria vector species following An. arabiensis (52.4%), An. funestus (s.l.) (20.8%), An. coluzzii (12.6%) and An. gambiae (6.8%). This species was found outdoors (51.2%) or entering houses (48.8%) in 35 suburban and rural locations, together with main vector species. Apart from human blood with index of 37%, An. rufipes also fed on animals including cows (52%), sheep (49%), pigs (16%), chickens (2%) and horses (1%). The overall parasite infection rate of this species was 0.4% based on the detection of P. falciparum circumsporozoite proteins in two of 517 specimens tested. Among the 21 An. rufipes populations assessed for deltamethrin susceptibility, seven populations were classified as “susceptible” (mortality ≥ 98%) , ten as “probable resistant” with a mortality range of 90–97% and four as “resistant” with a mortality range of 80–89%.ConclusionsThis study revealed changeable resting and feeding behaviour of An. rufipes, as well as further evidence on its ability to carry human malaria parasites in North Cameroon. Besides, this species is developing physiological resistance to deltamethrin insecticide which is used in treated nets and agriculture throughout the country, and should be regarded as one of potential targets for the control of residual malaria parasite transmission in Africa.


International Journal of Infectious Diseases | 2017

Impact of long-lasting insecticidal nets on prevalence of subclinical malaria among children in the presence of pyrethroid resistance in Anopheles culicifacies in Central India

Mehul Kumar Chourasia; Raghavendra Kamaraju; Immo Kleinschmidt; Rajendra M Bhatt; Dipak Kumar Swain; Tessa Bellamy Knox; Neena Valecha

Summary Background Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. Methods This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. Findings Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51–0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41–0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70–1·06) or incidence (adjusted RR 0·89, 0·72–1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016–0·033] per person-year in India, to 0·80 [0·65–0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5–1·3] in India to an average infection prevalence of 50·8% [43·4–58·2] in Benin). Interpretation Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. Funding Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.

Collaboration


Dive into the Tessa Bellamy Knox's collaboration.

Top Co-Authors

Avatar

Abraham Mnzava

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin J. Donnelly

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Krishanthi Subramaniam

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jude D. Bigoga

University of Yaoundé I

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hmooda Toto Kafy

Federal Ministry of Health

View shared research outputs
Top Co-Authors

Avatar

Eric Ochomo

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Nabie Bayoh

Kenya Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge