Tessa Lühmann
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tessa Lühmann.
European Journal of Pharmaceutics and Biopharmaceutics | 2012
Anne J. Meinel; Oliver Germershaus; Tessa Lühmann; Hans P. Merkle; Lorenz Meinel
Electrospinning allows for the preparation of unique matrices with nano- to micrometer sized fibers using diverse materials and numerous fabrication techniques. A variety of post-spinning modification techniques add to the large repertoire and enable development of tailored drug delivery systems. Herein we provide an overview on current developments regarding different techniques to manufacture electrospun matrices and achieve efficient drug loading and release. The delivery systems discussed employ a broad range of drugs from small molecules like antibiotics to protein drugs such as growth factors as well as nucleic acids for gene delivery or mRNA knockdown. We further highlight various biomedical applications, where the combined features of fibrous electrospun matrices and drug delivery function have resulted in first valuable results or seem to bear interesting prospects. In summary, electrospun scaffolds are highly versatile systems for the incorporation of various drugs and allow for significant variation with regard to scaffold material, spatial design, and surface modification. However, the multiplicity of options and parameters to vary during development of electrospun scaffold based drug delivery systems may also have contributed to the small number of the concepts that were successfully translated into therapeutic reality.
The Journal of Neuroscience | 2010
Jorge A. Pereira; Reto Baumann; Camilla Norrmén; Christian Somandin; Michaela Miehe; Claire Jacob; Tessa Lühmann; Heike Hall-Bozic; Ned Mantei; Dies Meijer; Ueli Suter
Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo remarkable differentiation both in morphology and gene expression patterns throughout lineage progression to myelinating and nonmyelinating phenotypes. Gene expression in SCs is particularly tightly regulated and critical for the organism, as highlighted by the fact that a 50% decrease or an increase to 150% of normal gene expression of some myelin proteins, like PMP22, results in peripheral neuropathies. Here, we selectively deleted Dicer and consequently gene expression regulation by mature miRNAs from Mus musculus SCs. Our results show that in the absence of Dicer, most SCs arrest at the promyelinating stage and fail to start forming myelin. At the molecular level, the promyelinating transcription factor Krox20 and several myelin proteins [including myelin associated glycoprotein (MAG) and PMP22] were strongly reduced in mutant sciatic nerves. In contrast, the myelination inhibitors SOX2, Notch1, and Hes1 were increased, providing an additional potential basis for impaired myelination. A minor fraction of SCs, with some peculiar differences between sensory and motor fibers, overcame the myelination block and formed unusually thin myelin, in line with observed impaired neuregulin and AKT signaling. Surprisingly, we also found signs of axonal degeneration in Dicer mutant mice. Thus, our data indicate that miRNAs critically regulate Schwann cell gene expression that is required for myelination and to maintain axons via axon–glia interactions.
Bioconjugate Chemistry | 2008
Tessa Lühmann; Markus Rimann; Anne Greet Bittermann; Heike Hall
Polycationic molecules form condensates with DNA and are used for gene therapy as an alternative to viral vectors. As clinical efficacy corresponds to cellular uptake, intracellular stability of the condensates, and bioavailability of the DNA, it is crucial to analyze uptake mechanisms and trafficking pathways. Here, a detailed study of uptake, stability, and localization of PLL-g-PEG-DNA nanoparticles within COS-7 cells is presented, using FACS analysis to assess the involvement of different uptake mechanisms, colocalization studies with markers indicative for different endocytotic pathways, and immunofluorescence staining to analyze colocalization with intracellular compartments. PLL-g-PEG-DNA nanoparticles were internalized in an energy-dependent manner after 2 h and accumulated in the perinuclear region after >6 h. The nanoparticles were found to be stable within the cytoplasm for at least 24 h and did not colocalize with the endosomal pathway. Nanoparticle uptake was approximately 50% inhibited by genistein, an inhibitor of the caveolae-mediated pathway. However, genistein did not inhibit gene expression, and PLL-g-PEG-DNA nanoparticles were not colocalized with caveolin-1 indicating that caveolae-mediated endocytosis is not decisive for DNA delivery. Clathrin-mediated endocytosis and macropinocytosis pathways were reduced by 17 and 24%, respectively, in the presence of the respective inhibitors. When cells were transfected in the presence of double and triple inhibitors, transfection efficiencies were increasingly reduced by 40 and 70%, respectively; however, no differences were found between the different uptake mechanisms. These findings suggest that PLL-g-PEG-DNA nanoparticles enter by several pathways and might therefore be an efficient and versatile tool to deliver therapeutic DNA.
Journal of the American Chemical Society | 2008
Ralf David; Robert Günther; Lars Baumann; Tessa Lühmann; Dieter Seebach; Hans-Jörg Hofmann; Annette G. Beck-Sickinger
How can we understand the contribution of individual parts or segments to complex structures? A typical strategy to answer this question is simulation of a segmental replacement followed by realization and investigation of the resulting effect in structure-activity studies. For proteins, this problem is commonly addressed by site-directed mutagenesis. A more general approach represents the exchange of whole secondary structure elements by rationally designed segments. For a demonstration of this possibility we identified the alpha-helix at the C-terminus of human interleukin-8 (hIL-8). Since this chemokine possesses four conserved cysteine residues, it can easily be altered by ligation strategies. A set of different segments, which are able to form amphiphilic helices, was synthesized to mimic the C-terminal alpha-helix. Beside sequences of alpha-amino acids, oligomers of non-natural beta(3)-amino acids with the side chains of canonical amino acids were introduced. Such beta-peptides form helices, which differ from the alpha-helix in handedness and dipole orientation. Variants of the semisynthetic hIL-8 proteins demonstrated clearly that the exact side chain orientation is of more importance than helix handedness and dipole orientation. The activity of a chimeric protein with a beta-peptide helix that mimics the side chain orientation of the native alpha-helix most perfectly is comparable to that of the native hIL-8. Concepts like this could be a first step toward the synthesis of proteins consisting of large artificial secondary structure elements.
Journal of Controlled Release | 2012
Tessa Lühmann; Oliver Germershaus; Jürgen Groll; Lorenz Meinel
Osteoporosis represents a major public health burden especially considering the aging populations worldwide. Drug targeting will be important to better meet these challenges and direct the full therapeutic potential of therapeutics to their intended site of action. This review has been organized in modules, such that scientists working in the field can easily gain specific insight in the field of bone targeting for the drug class they are interested in. We review currently approved and emerging treatment options for osteoporosis and discuss these in light of the benefit these would gain from advanced targeting. In addition, established targeting strategies are reviewed and novel opportunities as well as promising areas are presented along with pharmaceutical strategies how to render novel composites consisting of a drug and a targeting moiety responsive to bone-specific or disease-specific environmental stimuli. Successful implementation of these principles into drug development programs for osteoporosis will substantially contribute to the clinical success of anti-catabolic and anabolic drugs of the future.
Biomaterials | 2011
Thomas von Erlach; Sven Zwicker; Bidhari Pidhatika; Rupert Konradi; Marcus Textor; Heike Hall; Tessa Lühmann
Successful gene delivery systems deliver DNA in a controlled manner combined with minimal toxicity and high transfection efficiency. Here we investigated 15 different copolymers of poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) of variable grafting densities and PMOXA molecular weights for their potential to complex and deliver plasmid DNA. PLL(20)g(7)PMOXA(4) formed at N/P charge ratio of 3.125 was found to transfect 9 ± 1.6% of COS-7 cells without impairment of cell viability. Furthermore these PLL-g-PMOXA-DNA condensates were internalized 2 h after transfection and localized in the perinuclear region after 6 h. The condensates displayed a hydrodynamic diameter of ∼100 nm and were found to be stable in serum and after 70 °C heat treatment, moreover the condensates protected DNA against DNase-I digestion. The findings suggest that DNA-PMOXA-g-PLL condensate formation for efficient DNA-delivery strongly depends on PMOXA grafting density and molecular weight showing an optimum at low grafting density between 7 and 14% and medium N/P charge ratio (3.125-6.25). Thus, PLL(20)g(7)PMOXA(4) copolymers might be promising as alternative to PLL-g-PEG-DNA condensates for delivery of therapeutic DNA.
Bioconjugate Chemistry | 2008
Markus Rimann; Tessa Lühmann; Marcus Textor; Barbara Guerino; Joëlle Ogier; Heike Hall
Local and controlled DNA release is a critical issue in current gene therapy. As viral gene delivery systems are associated with severe security problems, nonviral gene delivery vehicles were developed. Here, DNA-nanoparticles using grafted copolymers of PLL and PEG to increase their biocompatibility and stealth properties were systematically studied. Ten different PLL-based polymers with no, low, and high PEG grafting and PEG molecular weights as well as different PLL backbone lengths were complexed with plasmids containing 3200 to 10,100 base pairs. Stable complexes were formed and selected for cytotoxicity and transfection efficiency. Predominantly, PLL-g-PEG-DNA nanoparticles grafted with 4 or 5% PEG moieties of 5 kDa transfected 40% COS-7 cells without reduction of cell viability when formed at N/P ratios between 0.1 and 12.5. The molecular weight of PLL did not significantly affect transfection efficiency or cytotoxicity indicating that a specific cationic charge-density-to-PEG-ratio is important for efficient transfection and low cytotoxicity. The PLL-g-PEG-DNA nanoparticles were spherical with a diameter of approximately 100 nm and did not aggregate over 2 weeks. Moreover, they protected included plasmid DNA against serum components and DNase I digestion. Therefore, such storage stable and versatile PLL-g-PEG-DNA nanoparticles might be useful to deliver differently sized therapeutic DNA for in vivo applications.
Scientific Reports | 2013
Jens Möller; Tessa Lühmann; Mamta Chabria; Heike Hall; Viola Vogel
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
Brain | 2012
Michael Horn; Reto Baumann; Jorge A. Pereira; Páris N. M. Sidiropoulos; Christian Somandin; Hans Welzl; Claudia Stendel; Tessa Lühmann; Carsten Wessig; Klaus V. Toyka; João B. Relvas; Jan Senderek; Ueli Suter
Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot–Marie–Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4–Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4–Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.
Biomaterials | 2009
Tessa Lühmann; Patrick Hänseler; Barbara Grant; Heike Hall
Concentration gradients of matrix-bound guidance cues in the extracellular matrix direct cell growth in native tissues and are of great interest for the design of biomedical scaffolds and on implant surfaces. This study describes effects of covalently immobilized gradients of the 6th Ig-like domain of cell adhesion molecule L1 (TG-L1Ig6) within 3D-fibrin matrices on cell alignment. Linear gradients of TG-L1Ig6 were established and shown to be stable for at least 24 h whereas soluble gradients disappeared completely. Fibroblast alignment along the gradients was observed when cultured on top and within TG-L1Ig6-gradient matrices. Fibroblasts responded to an increase of 0.2 microg TG-L1Ig6/ml per mm matrix, corresponding to a concentration change of <1% per cell. Significant differences were observed when fibroblasts were cultured within the TG-L1Ig6-gradient matrices as the number of aligned cells decreased by 20-30% in the middle of the gradient when compared to cells cultivated on top of the gradient. This finding might be explained by approximately 13% reduction in the average cell length of fibroblasts within compared to fibroblasts cultured on top of the gradient matrix. In contrast to fibroblasts endothelial cells did not show any alignment with TG-L1Ig6-gradient matrices. The study indicates that cells exposed to gradients of matrix-bound TG-L1Ig6 are able to respond differentially to 2D- or 3D-environments suggesting the use of gradients for cell guidance within 3D-scaffolds and on implant surfaces to improve their biomedical functions.