Tessa Mazor
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tessa Mazor.
PLOS ONE | 2013
Sylvaine Giakoumi; Maria Sini; Vasilis Gerovasileiou; Tessa Mazor; Jutta Beher; Hugh P. Possingham; Ameer Abdulla; Melih Ertan Çinar; Panagiotis Dendrinos; Ali Cemal Gucu; Alexandros A. Karamanlidis; Petra Rodic; Panayotis Panayotidis; Ergün Taşkın; Andrej Jaklin; Eleni Voultsiadou; Chloë Webster; Argyro Zenetos; Stelios Katsanevakis
Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning.
Ecological Applications | 2014
Tessa Mazor; Sylvaome Giakoumi; Saslit Kark; Hugh P. Possingham
Explicitly including cost in marine conservation planning is essential for achieving feasible and efficient conservation outcomes. Yet, spatial priorities for marine conservation are still often based solely on biodiversity hotspots, species richness, and/or cumulative threat maps. This study aims to provide an approach for including cost when planning large-scale Marine Protected Area (MPA) networks that span multiple countries. Here, we explore the incorporation of cost in the complex setting of the Mediterranean Sea. In order to include cost in conservation prioritization, we developed surrogates that account for revenue from multiple marine sectors: commercial fishing, noncommercial fishing, and aquaculture. Such revenue can translate into an opportunity cost for the implementation of an MPA network. Using the software Marxan, we set conservation targets to protect 10% of the distribution of 77 threatened marine species in the Mediterranean Sea. We compared nine scenarios of opportunity cost by calculating the area and cost required to meet our targets. We further compared our spatial priorities with those that are considered consensus areas by several proposed prioritization schemes in the Mediterranean Sea, none of which explicitly considers cost. We found that for less than 10% of the Seas area, our conservation targets can be achieved while incurring opportunity costs of less than 1%. In marine systems, we reveal that area is a poor cost surrogate and that the most effective surrogates are those that account for multiple sectors or stakeholders. Furthermore, our results indicate that including cost can greatly influence the selection of spatial priorities for marine conservation of threatened species. Although there are known limitations in multinational large-scale planning, attempting to devise more systematic and rigorous planning methods is especially critical given that collaborative conservation action is on the rise and global financial crisis restricts conservation investments.
PLOS ONE | 2014
Tessa Mazor; Hugh P. Possingham; Dori Edelist; Eran Brokovich; Salit Kark
Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes). We applied the marine zoning decision support tool Marxan to each planning scenario and tested a) the ability of each scenario to reach biodiversity targets, b) the change in opportunity cost and c) the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and economic considerations within a countrys territorial waters.
BioScience | 2013
Noam Levin; Ayesha I. T. Tulloch; Ascelin Gordon; Tessa Mazor; Nils Bunnefeld; Salit Kark
International collaboration can be crucial in determining the outcomes of conservation actions. Here, we propose a framework for incorporating demographic, socioeconomic, and political data into conservation prioritization in complex regions shared by multiple countries. As a case study, we quantitatively apply this approach to one of the worlds most complex and threatened biodiversity hotspots: the Mediterranean Basin. Our analysis of 22 countries surrounding the Mediterranean Sea showed that the strongest economic, trade, tourism, and political ties are clearly among the three northwestern countries of Italy, France, and Spain. Although economic activity between countries is often seen as a threat, it may also serve as an indicator of the potential of collaboration in conservation. Using data for threatened marine vertebrate species, we show how areas prioritized for conservation shift spatially when economic factors are used as a surrogate to favor areas where collaborative potential in conservation is more likely.
Reviews in Fish Biology and Fisheries | 2012
Sylvaine Giakoumi; Tessa Mazor; Simonetta Fraschetti; Salit Kark; Michelle E. Portman; Marta Coll; Jeroen Steenbeek; Hugh P. Possingham
Twenty leading scientists in the field of marine conservation planning attended the first international workshop on conservation planning in the Mediterranean Sea. This globally significant biodiversity hotspot has been subjected to human exploitation and degradation for 1,000s of years. Recently, several initiatives have tried to identify priority areas for conservation across the Mediterranean Sea. However, none of these efforts have led to large-scale actions yet. The aim of the workshop was to establish a network of scientists who are involved in large-scale conservation planning initiatives throughout the Mediterranean basin to promote collaboration and reduce redundancy in conservation initiatives. The three focus groups of the workshop build on existing efforts and intend to deliver: (1) a roadmap for setting conservation priorities, (2) a methodological framework for linking threats, actions and costs to improve the prioritization process, and (3) a systematic conservation planning process tailored to complex environments such as the Mediterranean Sea. Joining forces and involving more scientists (especially from the South-eastern part of the region) in following meetings, the participants endeavour to provide guidelines on how to bridge the science-policy gap and hence aid decision-makers to take efficient conservation actions.
Conservation Biology | 2015
Salit Kark; Eran Brokovich; Tessa Mazor; Noam Levin
Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks.
PLOS ONE | 2018
Szymon Surma; Tony J. Pitcher; Rajeev Kumar; Divya A. Varkey; E. A. Pakhomov; Mimi E. Lam; Andrea Belgrano; Francois Bastardie; Niels T. Hintzen; Franziska Althaus; Susan Jane Baird; Jenny Black; Lene Buhl-Mortensen; Alexander B. Campbell; Rui Catarino; Jeremy S. Collie; James H. Cowan; Deon Durholtz; Nadia Engstrom; Tracey P. Fairweather; Heino O. Fock; Richard Ford; Patricio A. Gálvez; Hans D. Gerritsen; María Eva Góngora; Jessica Gonzalez; Jan Geert Hiddink; Kathryn M. Hughes; Steven S. Intelmann; Chris Jenkins
This paper analyzes the trophic role of Pacific herring, the potential consequences of its depletion, and the impacts of alternative herring fishing strategies on a Northeast Pacific food web in relation to precautionary, ecosystem-based management. We used an Ecopath with Ecosim ecosystem model parameterized for northern British Columbia (Canada), employing Ecosim to simulate ecosystem effects of herring stock collapse. The ecological impacts of various herring fishing strategies were investigated with a Management Strategy Evaluation algorithm within Ecosim, accounting for variability in climatic drivers and stock assessment errors. Ecosim results suggest that herring stock collapse would have cascading impacts on much of the pelagic food web. Management Strategy Evaluation results indicate that herring and their predators suffer moderate impacts from the existing British Columbia harvest control rule, although more precautionary management strategies could substantially reduce these impacts. The non-capture spawn-on-kelp fishery, traditionally practiced by many British Columbia and Alaska indigenous peoples, apparently has extremely limited ecological impacts. Our simulations also suggest that adopting a maximum sustainable yield management strategy in Northeast Pacific herring fisheries could generate strong, cascading food web effects. Furthermore, climate shifts, especially when combined with herring stock assessment errors, could strongly reduce the biomasses and resilience of herring and its predators. By clarifying the trophic role of Pacific herring, this study aims to facilitate precautionary fisheries management via evaluation of alternative fishing strategies, and thereby to inform policy tradeoffs among multiple ecological and socioeconomic factors.
Biological Conservation | 2013
Tessa Mazor; Noam Levin; Hugh P. Possingham; Yaniv Levy; Duccio Rocchini; Anthony J. Richardson; Salit Kark
Diversity and Distributions | 2013
Tessa Mazor; Hugh P. Possingham; Salit Kark
Current Opinion in Environmental Sustainability | 2015
Salit Kark; Ayesha I. T. Tulloch; Ascelin Gordon; Tessa Mazor; Nils Bunnefeld; Noam Levin