Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuichi Yoshizato is active.

Publication


Featured researches published by Tetsuichi Yoshizato.


Nature Genetics | 2013

Integrated molecular analysis of clear-cell renal cell carcinoma

Yusuke Sato; Tetsuichi Yoshizato; Yuichi Shiraishi; Shigekatsu Maekawa; Yusuke Okuno; Takumi Kamura; Teppei Shimamura; Aiko Sato-Otsubo; Genta Nagae; Hiromichi Suzuki; Yasunobu Nagata; Kenichi Yoshida; Ayana Kon; Yutaka Suzuki; Kenichi Chiba; Hiroko Tanaka; Atsushi Niida; Akihiro Fujimoto; Tatsuhiko Tsunoda; Teppei Morikawa; Daichi Maeda; Haruki Kume; Sumio Sugano; Masashi Fukayama; Hiroyuki Aburatani; Masashi Sanada; Satoru Miyano; Yukio Homma; Seishi Ogawa

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C–VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.


Nature Genetics | 2015

Mutational landscape and clonal architecture in grade II and III gliomas

Hiromichi Suzuki; Kosuke Aoki; Kenichi Chiba; Yusuke Sato; Yusuke Shiozawa; Yuichi Shiraishi; Teppei Shimamura; Atsushi Niida; Kazuya Motomura; Fumiharu Ohka; Takashi Yamamoto; Kuniaki Tanahashi; Melissa Ranjit; Toshihiko Wakabayashi; Tetsuichi Yoshizato; Keisuke Kataoka; Kenichi Yoshida; Yasunobu Nagata; Aiko Sato-Otsubo; Hiroko Tanaka; Masashi Sanada; Yutaka Kondo; Hideo Nakamura; Masahiro Mizoguchi; Tatsuya Abe; Yoshihiro Muragaki; Reiko Watanabe; Ichiro Ito; Satoru Miyano; Atsushi Natsume

Grade II and III gliomas are generally slowly progressing brain cancers, many of which eventually transform into more aggressive tumors. Despite recent findings of frequent mutations in IDH1 and other genes, knowledge about their pathogenesis is still incomplete. Here, combining two large sets of high-throughput sequencing data, we delineate the entire picture of genetic alterations and affected pathways in these glioma types, with sensitive detection of driver genes. Grade II and III gliomas comprise three distinct subtypes characterized by discrete sets of mutations and distinct clinical behaviors. Mutations showed significant positive and negative correlations and a chronological hierarchy, as inferred from different allelic burdens among coexisting mutations, suggesting that there is functional interplay between the mutations that drive clonal selection. Extensive serial and multi-regional sampling analyses further supported this finding and also identified a high degree of temporal and spatial heterogeneity generated during tumor expansion and relapse, which is likely shaped by the complex but ordered processes of multiple clonal selection and evolutionary events.


Nature Genetics | 2015

Integrated molecular analysis of adult T cell leukemia/lymphoma

Keisuke Kataoka; Yasunobu Nagata; Akira Kitanaka; Yuichi Shiraishi; Teppei Shimamura; Jun Ichirou Yasunaga; Yasushi Totoki; Kenichi Chiba; Aiko Sato-Otsubo; Genta Nagae; Ryohei Ishii; Satsuki Muto; Shinichi Kotani; Yosaku Watatani; June Takeda; Masashi Sanada; Hiroko Tanaka; Hiromichi Suzuki; Yusuke Sato; Yusuke Shiozawa; Tetsuichi Yoshizato; Kenichi Yoshida; Hideki Makishima; Masako Iwanaga; Guangyong Ma; Kisato Nosaka; Masakatsu Hishizawa; Hidehiro Itonaga; Yoshitaka Imaizumi; Wataru Munakata

Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor–NF-κB signaling, T cell trafficking and other T cell–related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.


The New England Journal of Medicine | 2015

Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

Tetsuichi Yoshizato; Bogdan Dumitriu; Kohei Hosokawa; Hideki Makishima; Kenichi Yoshida; Danielle M. Townsley; Aiko Sato-Otsubo; Yusuke Sato; Delong Liu; Hiromichi Suzuki; Colin O. Wu; Yuichi Shiraishi; Michael J. Clemente; Keisuke Kataoka; Yusuke Shiozawa; Yusuke Okuno; Kenichi Chiba; Hiroko Tanaka; Yasunobu Nagata; Takamasa Katagiri; Ayana Kon; Masashi Sanada; Phillip Scheinberg; Satoru Miyano; Jaroslaw P. Maciejewski; Shinji Nakao; Neal S. Young; Seishi Ogawa

BACKGROUND In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. METHODS We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. RESULTS Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. CONCLUSIONS Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).


Science | 2014

Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome

Yusuke Sato; Shigekatsu Maekawa; Ryohei Ishii; Masashi Sanada; Teppei Morikawa; Yuichi Shiraishi; Kenichi Yoshida; Yasunobu Nagata; Aiko Sato-Otsubo; Tetsuichi Yoshizato; Hiromichi Suzuki; Yusuke Shiozawa; Keisuke Kataoka; Ayana Kon; Kosuke Aoki; Kenichi Chiba; Hiroko Tanaka; Haruki Kume; Satoru Miyano; Masashi Fukayama; Osamu Nureki; Yukio Homma; Seishi Ogawa

Cushing’s syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing’s syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing’s syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing’s syndrome, providing insights into the diagnosis and therapeutics of this syndrome. Adrenal Cushing’s syndrome involves recurrent mutations in a key signal transduction pathway [Also see Perspective by Kirschner] Candidate Cushings culprit identified Cushings syndrome is a rare condition resulting from the excess production of cortisol. About 15% of Cushings syndrome cases are associated with an adrenocortical tumor. However, the genetic etiology of these adrenocortical tumors is ill defined (see the Perspective by Kirschner). Cao et al. and Sato et al. both performed whole-exome sequencing of tumors from individuals with adrenal Cushings syndrome and compared it with the patients own matched non-tumor DNA and identified recurrent mutations in the protein kinase A catalytic subunit alpha (PRKACA) gene, as well as less frequent mutations in other putative pathological genes. The most common recurrent mutation activated the kinase, which may suggest a potential therapeutic target. Science, this issue p. 913, p. 917; see also p. 804


Nature Genetics | 2017

Dynamics of clonal evolution in myelodysplastic syndromes

Hideki Makishima; Tetsuichi Yoshizato; Kenichi Yoshida; Mikkael A. Sekeres; Tomas Radivoyevitch; Hiromichi Suzuki; Bartlomie J. Przychodzen; Yasunobu Nagata; Manja Meggendorfer; Masashi Sanada; Yusuke Okuno; Cassandra M. Hirsch; Teodora Kuzmanovic; Yusuke Sato; Aiko Sato-Otsubo; Thomas LaFramboise; Naoko Hosono; Yuichi Shiraishi; Kenichi Chiba; Claudia Haferlach; Wolfgang Kern; Hiroko Tanaka; Yusuke Shiozawa; Inés Gómez-Seguí; Holleh D Husseinzadeh; Swapna Thota; Kathryn M Guinta; Brittney Dienes; Tsuyoshi Nakamaki; Shuichi Miyawaki

To elucidate differential roles of mutations in myelodysplastic syndromes (MDS), we investigated clonal dynamics using whole-exome and/or targeted sequencing of 699 patients, of whom 122 were analyzed longitudinally. Including the results from previous reports, we assessed a total of 2,250 patients for mutational enrichment patterns. During progression, the number of mutations, their diversity and clone sizes increased, with alterations frequently present in dominant clones with or without their sweeping previous clones. Enriched in secondary acute myeloid leukemia (sAML; in comparison to high-risk MDS), FLT3, PTPN11, WT1, IDH1, NPM1, IDH2 and NRAS mutations (type 1) tended to be newly acquired, and were associated with faster sAML progression and a shorter overall survival time. Significantly enriched in high-risk MDS (in comparison to low-risk MDS), TP53, GATA2, KRAS, RUNX1, STAG2, ASXL1, ZRSR2 and TET2 mutations (type 2) had a weaker impact on sAML progression and overall survival than type-1 mutations. The distinct roles of type-1 and type-2 mutations suggest their potential utility in disease monitoring.


Journal of Clinical Investigation | 2014

Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria

Wenyi Shen; Michael J. Clemente; Naoko Hosono; Kenichi Yoshida; Bartlomiej Przychodzen; Tetsuichi Yoshizato; Yuichi Shiraishi; Satoru Miyano; Seishi Ogawa; Jaroslaw P. Maciejewski; Hideki Makishima

Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal disease of hematopoietic stem cells that is associated with hemolysis, marrow failure, and thrombophilia. PNH has been considered a monogenic disease that results from somatic mutations in the gene encoding PIGA, which is required for biosynthesis of glycosylphosphatidylinisotol-anchored (GPI-anchored) proteins. The loss of certain GPI-anchored proteins is hypothesized to provide the mutant clone with an extrinsic growth advantage, but some features of PNH argue that there are intrinsic drivers of clonal expansion. Here, we performed whole-exome sequencing of paired PNH+ and PNH- fractions on samples taken from 12 patients as well as targeted deep sequencing of an additional 36 PNH patients. We identified additional somatic mutations that resulted in a complex hierarchical clonal architecture, similar to that observed in myeloid neoplasms. In addition to mutations in PIGA, mutations were found in genes known to be involved in myeloid neoplasm pathogenesis, including TET2, SUZ12, U2AF1, and JAK2. Clonal analysis indicated that these additional mutations arose either as a subclone within the PIGA-mutant population, or prior to PIGA mutation. Together, our data indicate that in addition to PIGA mutations, accessory genetic events are frequent in PNH, suggesting a stepwise clonal evolution derived from a singular stem cell clone.


Blood | 2015

Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia

Bogdan Dumitriu; Xingmin Feng; Danielle M. Townsley; Yasutaka Ueda; Tetsuichi Yoshizato; Rodrigo T. Calado; Yanqin Yang; Yoshiyuki Wakabayashi; Sachiko Kajigaya; Seishi Ogawa; Jun Zhu; Neal S. Young

The pathophysiology of severe aplastic anemia (SAA) is immune-mediated destruction of hematopoietic stem and progenitor cells (HSPCs). Most patients respond to immunosuppressive therapies, but a minority transform to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), frequently associated with monosomy 7 (-7). Thirteen SAA patients were analyzed for acquired mutations in myeloid cells at the time of evolution to -7, and all had a dominant HSPC clone bearing specific acquired mutations. However, mutations in genes associated with MDS/AML were present in only 4 cases. Patients who evolved to MDS and AML showed marked progressive telomere attrition before the emergence of -7. Single telomere length analysis confirmed accumulation of short telomere fragments of individual chromosomes. Our results indicate that accelerated telomere attrition in the setting of a decreased HSPC pool is characteristic of early myeloid oncogenesis, specifically chromosome 7 loss, in MDS/AML after SAA, and provides a possible mechanism for development of aneuploidy.


Blood | 2017

Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: Impact on outcome of stem cell transplantation

Tetsuichi Yoshizato; Yasuhito Nannya; Yoshiko Atsuta; Yusuke Shiozawa; Yuka Iijima-Yamashita; Kenichi Yoshida; Yuichi Shiraishi; Hiromichi Suzuki; Yasunobu Nagata; Yusuke Sato; Nobuyuki Kakiuchi; Keitaro Matsuo; Makoto Onizuka; Keisuke Kataoka; Kenichi Chiba; Hiroko Tanaka; Hiroo Ueno; Masahiro Nakagawa; Bartlomiej Przychodzen; Claudia Haferlach; Wolfgang Kern; Kosuke Aoki; Hidehiro Itonaga; Yoshinobu Kanda; Mikkael A. Sekeres; Jaroslaw P. Maciejewski; Torsten Haferlach; Yasushi Miyazaki; Keizo Horibe; Masashi Sanada

Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation.


Blood | 2016

Variegated RHOA mutations in adult T-cell leukemia/lymphoma

Yasunobu Nagata; Kenji Kontani; Terukazu Enami; Keisuke Kataoka; Ryohei Ishii; Yasushi Totoki; Tatsuki R. Kataoka; Masahiro Hirata; Kazuhiro Aoki; Kazumi Nakano; Akira Kitanaka; Mamiko Sakata-Yanagimoto; Sachiko Egami; Yuichi Shiraishi; Kenichi Chiba; Hiroko Tanaka; Yusuke Shiozawa; Tetsuichi Yoshizato; Hiromichi Suzuki; Ayana Kon; Kenichi Yoshida; Yusuke Sato; Aiko Sato-Otsubo; Masashi Sanada; Wataru Munakata; Hiromi Nakamura; Natsuko Hama; Satoru Miyano; Osamu Nureki; Tatsuhiro Shibata

Adult T-cell leukemia/lymphoma (ATLL) is a distinct form of peripheral T-cell lymphoma with poor prognosis, which is caused by the human T-lymphotropic virus type 1 (HTLV-1). In contrast to the unequivocal importance of HTLV-1 infection in the pathogenesis of ATLL, the role of acquired mutations in HTLV-1 infected T cells has not been fully elucidated, with a handful of genes known to be recurrently mutated. In this study, we identified unique RHOA mutations in ATLL through whole genome sequencing of an index case, followed by deep sequencing of 203 ATLL samples. RHOA mutations showed distinct distribution and function from those found in other cancers. Involving 15% (30/203) of ATLL cases, RHOA mutations were widely distributed across the entire coding sequence but almost invariably located at the guanosine triphosphate (GTP)-binding pocket, with Cys16Arg being most frequently observed. Unexpectedly, depending on mutation types and positions, these RHOA mutants showed different or even opposite functional consequences in terms of GTP/guanosine diphosphate (GDP)-binding kinetics, regulation of actin fibers, and transcriptional activation. The Gly17Val mutant did not bind GTP/GDP and act as a dominant negative molecule, whereas other mutants (Cys16Arg and Ala161Pro) showed fast GTP/GDP cycling with enhanced transcriptional activation. These findings suggest that both loss- and gain-of-RHOA functions could be involved in ATLL leukemogenesis. In summary, our study not only provides a novel insight into the molecular pathogenesis of ATLL but also highlights a unique role of variegation of heterologous RHOA mutations in human cancers.

Collaboration


Dive into the Tetsuichi Yoshizato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge