Tetsuo Ashizawa
Houston Methodist Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tetsuo Ashizawa.
Nature Genetics | 1997
Olga Zhuchenko; Jennifer Bailey; Penelope E. Bonnen; Tetsuo Ashizawa; David W. Stockton; Christopher I. Amos; William B. Dobyns; S. H. Subramony; Huda Y. Zoghbi; Cheng Chi Lee
A polymorphic CAG repeat was identified in the human α1A voltage-dependent calcium channel subunit. To test the hypothesis that expansion of this CAG repeat could be the cause of an inherited progressive ataxia, we genotyped a large number of unrelated controls and ataxia patients. Eight unrelated patients with late onset ataxia had alleles with larger repeat numbers (21‐27) compared to the number of repeats (4‐16) in 475 non‐ataxia individuals. Analysis of the repeat length in families of the affected individuals revealed that the expansion segregated with the phenotype in every patient. We identified six isoforms of the human α1A calcium channel subunit. The CAG repeat is within the open reading frame and is predicted to encode glutamine in three of the isoforms. We conclude that a small polyglutamine expansion in the human α1A calcium channel is most likely the cause of a newly classified autosomal dominant spinocerebellar ataxia, SCA6.
Nature Genetics | 2000
Tohru Matsuura; Takanori Yamagata; Daniel L. Burgess; Astrid Rasmussen; Raji P. Grewal; Kei Watase; Mehrdad Khajavi; Alanna E. McCall; Caleb F. Davis; Lan Zu; Madhureeta Achari; Stefan M. Pulst; Elisa Alonso; Jeffrey L. Noebels; David L. Nelson; Huda Y. Zoghbi; Tetsuo Ashizawa
Spinocerebellar ataxia type 10 (SCA10; MIM 603516; refs 1,2) is an autosomal dominant disorder characterized by cerebellar ataxia and seizures. The gene SCA10 maps to a 3.8-cM interval on human chromosome 22q13–qter (refs 1,2). Because several other SCA subtypes show trinucleotide repeat expansions, we examined microsatellites in this region. We found an expansion of a pentanucleotide (ATTCT) repeat in intron 9 of SCA10 in all patients in five Mexican SCA10 families. There was an inverse correlation between the expansion size, up to 22.5 kb larger than the normal allele, and the age of onset (r2=0.34, P=0.018). Analysis of 562 chromosomes from unaffected individuals of various ethnic origins (including 242 chromosomes from Mexican persons) showed a range of 10 to 22 ATTCT repeats with no evidence of expansions. Our data indicate that the new SCA10 intronic ATTCT pentanucleotide repeat in SCA10 patients is unstable and represents the largest microsatellite expansion found so far in the human genome.
American Journal of Human Genetics | 1998
Sanjay I. Bidichandani; Tetsuo Ashizawa; Pragna Patel
Friedreich ataxia (FRDA), an autosomal recessive, neurodegenerative disease is the most common inherited ataxia. The vast majority of patients are homozygous for an abnormal expansion of a polymorphic GAA triplet repeat in the first intron of the X25 gene, which encodes a mitochondrial protein, frataxin. Cellular degeneration in FRDA may be caused by mitochondrial dysfunction, possibly due to abnormal iron accumulation, as observed in yeast cells deficient for a frataxin homologue. Using RNase protection assays, we have shown that patients homozygous for the expansion have a marked deficiency of mature X25 mRNA. The mechanism(s) by which the intronic GAA triplet expansion results in this reduction of X25 mRNA is presently unknown. No evidence was found for abnormal splicing of the expanded intron 1. Using cloned repeat sequences from FRDA patients, we show that the GAA repeat per se interferes with in vitro transcription in a length-dependent manner, with both prokaryotic and eukaryotic enzymes. This interference was most pronounced in the physiological orientation of transcription, when synthesis of the GAA-rich transcript was attempted. These results are consistent with the observed negative correlation between triplet-repeat length and the age at onset of disease. Using in vitro chemical probing strategies, we also show that the GAA triplet repeat adopts an unusual DNA structure, demonstrated by hyperreactivity to osmium tetroxide, hydroxylamine, and diethyl pyrocarbonate. These results raise the possibility that the GAA triplet-repeat expansion may result in an unusual yet stable DNA structure that interferes with transcription, ultimately leading to a cellular deficiency of frataxin.
Neurology | 2004
M. K. Bruno; Mark Hallett; Katrina Gwinn-Hardy; B. Sorensen; Elaine Considine; S. Tucker; David R. Lynch; Katherine D. Mathews; Kathryn J. Swoboda; Juliette Harris; Bing-Wen Soong; Tetsuo Ashizawa; Joseph Jankovic; D. Renner; Ying-Hui Fu; Louis J. Ptáček
Background: Paroxysmal kinesigenic dyskinesia (PKD) is a rare disorder characterized by short episodes of involuntary movement attacks triggered by sudden voluntary movements. Although a genetic basis is suspected in idiopathic cases, the gene has not been discovered. Establishing strict diagnostic criteria will help genetic studies. Methods: The authors reviewed the clinical features of 121 affected individuals, who were referred for genetic study with a presumptive diagnosis of idiopathic PKD. Results: The majority (79%) of affected subjects had a distinctive homogeneous phenotype. The authors propose the following diagnostic criteria for idiopathic PKD based on this phenotype: identified trigger for the attacks (sudden movements), short duration of attacks (<1 minute), lack of loss of consciousness or pain during attacks, antiepileptic drug responsiveness, exclusion of other organic diseases, and age at onset between 1 and 20 years if there is no family history (age at onset may be applied less stringently in those with family history). In comparing familial and sporadic cases, sporadic cases were more frequently male, and infantile convulsions were more common in the familial kindreds. Females had a higher remission rate than males. An infantile-onset group with a different set of characteristics was identified. A clear kinesigenic trigger was not elicited in all cases, antiepileptic response was not universal, and some infants had attacks while asleep. Conclusions: The diagnosis of idiopathic paroxysmal kinesigenic dyskinesia (PKD) can be made based on historical features. The correct diagnosis has implications for treatment and prognosis, and the diagnostic scheme may allow better focus in the search for the PKD gene(s).
Neurology | 2000
Eng-King Tan; Mehrdad Khajavi; J. I. Thornby; Shinichiro Nagamitsu; Joseph Jankovic; Tetsuo Ashizawa
Background: In recent years, interest in gene–environment interactions has spurred a great number of association studies on polymorphism of different genes. Objective: To review case-control studies of genetic polymorphisms in PD, and perform meta-analysis of individual gene polymorphism. Methods: The authors searched the Medline database (PubMed) for publications (English language) from January 1966 to November 1999 for association studies in PD. The key words used were “PD” and “polymorphism.” The authors supplemented the search with relevant references quoted in these published articles. Those with four or more independent studies of a specific gene polymorphism were subjected to meta-analysis, with the exception of cytochrome-P450 enzyme polymorphisms, for which meta-analyses results were already available in the literature. Results: The authors identified 84 studies on 14 genes, including dopamine receptors (DRD2 and DRD4), dopamine transporter (DAT), monoamine oxidase (MAOA and MAOB), catechol-O-methyltransferase (COMT), N-acetyltransferase 2 (NAT2), APOE, glutathione transferase (GSTT1, GSTM1, GSTP1, and GSTZ1), and mitochondrial genes (tRNAGlu and ND2). Four polymorphisms showed significant association with PD: slow acetylator genotypes of NAT2 (PD:control OR = 1.36), allele >188bp of the MAOB (GT)n polymorphism (OR = 2.58), the deletion allele of GSTT1 (OR = 1.34), and A4336G of tRNAGlu (OR = 3.0). No significant differences were found for the other genes. Conclusion: Significant associations with PD were found in polymorphisms of NAT2, MAOB, GSTT1, and tRNAGlu. Although significant association does not imply a causal relationship between the presence of the polymorphisms and PD pathogenesis, their pathophysiologic significance should be studied further.
Neurology | 2005
S. H. Subramony; W. May; David R. Lynch; Christopher M. Gomez; Kenneth H. Fischbeck; Mark Hallett; P. Taylor; Robert B. Wilson; Tetsuo Ashizawa
Measuring the severity of neurologic dysfunction in patients with inherited ataxias, including Friedreich ataxia (FA), is difficult because of the variable rate of progression, the variable age at onset and the variety of neural systems that may be affected. The authors discuss the problems related to rating scales in the ataxias, report a neurologic rating scale for FA, and demonstrate acceptable interrater reliability of the instrument.
Neurology | 2012
Jong-Min Lee; Eliana Marisa Ramos; Ji Hyun Lee; Tammy Gillis; Jayalakshmi S. Mysore; Michael R. Hayden; Simon C. Warby; Patrick J. Morrison; Martha Nance; Christopher A. Ross; Russell L. Margolis; Ferdinando Squitieri; S. Orobello; S. Di Donato; Estrella Gomez-Tortosa; Carmen Ayuso; Oksana Suchowersky; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Randi Jones; Tetsuo Ashizawa; Samuel Frank; Marie Saint-Hilaire; Steven M. Hersch; H.D. Rosas; Diane Lucente; Madeline Harrison; Andrea Zanko
Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695
Neuron | 2012
Konstantinos Charizanis; Kuang Yung Lee; Ranjan Batra; Marianne Goodwin; Chaolin Zhang; Yuan Yuan; Lily Shiue; Melissa S. Cline; Marina M. Scotti; Guangbin Xia; Ashok V. Kumar; Tetsuo Ashizawa; H. Brent Clark; Takashi Kimura; Masanori P. Takahashi; Harutoshi Fujimura; Kenji Jinnai; Hiroo Yoshikawa; Mário Gomes-Pereira; Geneviève Gourdon; Noriaki Sakai; Seiji Nishino; Thomas C. Foster; Manuel Ares; Robert B. Darnell; Maurice S. Swanson
The RNA-mediated disease model for myotonic dystrophy (DM) proposes that microsatellite C(C)TG expansions express toxic RNAs that disrupt splicing regulation by altering MBNL1 and CELF1 activities. While this model explains DM manifestations in muscle, less is known about the effects of C(C)UG expression on the brain. Here, we report that Mbnl2 knockout mice develop several DM-associated central nervous system (CNS) features including abnormal REM sleep propensity and deficits in spatial memory. Mbnl2 is prominently expressed in the hippocampus and Mbnl2 knockouts show a decrease in NMDA receptor (NMDAR) synaptic transmission and impaired hippocampal synaptic plasticity. While Mbnl2 loss did not significantly alter target transcript levels in the hippocampus, misregulated splicing of hundreds of exons was detected using splicing microarrays, RNA-seq, and HITS-CLIP. Importantly, the majority of the Mbnl2-regulated exons examined were similarly misregulated in DM. We propose that major pathological features of the DM brain result from disruption of the MBNL2-mediated developmental splicing program.
Neurology | 1998
C. S. Benton; R. de Silva; S. L. Rutledge; S. Bohlega; Tetsuo Ashizawa; Huda Y. Zoghbi
Objective: To screen for the SCA-7 mutation in autosomal dominant cerebellar ataxia (ADCA) families and study genotype/phenotype correlations. Background: The association of cerebellar ataxia and progressive pigmentary macular dystrophy clinically defines a distinct form of ADCA classified as SCA-7. SCA-7 is caused by expansion of a highly unstable CAG repeat that lies in the coding region of a novel gene on chromosome 3p12-13. Methods: We screened 51 ADCA kindreds, in which SCA-1, SCA-2, SCA-3, and SCA6 mutations had been excluded, for the SCA-7 mutation using primers that specifically amplify the SCA-7 CAG repeat. Results: The SCA-7 mutation was identified in 10 independent families. Normal alleles ranged from 7 to 16 repeats; expanded alleles ranged from 41 to 306 repeats. One allele with 36 repeats was found in an asymptomatic individual carrying an at-risk haplotype. SCA-7 presents a wide spectrum of clinical features including visual loss, dementia, hypoacusia, severe hypotonia, and auditory hallucinations. Juvenile SCA-7 occurs on maternal and paternal transmission of the mutation, whereas the infantile form occurs only on paternal transmission. An infant of African American descent carried the largest SCA-7 expansion (306 CAG repeats) and had severe hypotonia, congestive heart failure, patent ductus arteriosus, cerebral and cerebellar atrophy, and visual loss. Conclusion: These data show a wide spectrum of phenotypic abnormalities in SCA-7 and define an infantile phenotype caused by the largest CAG repeat expansion described to date.
American Journal of Human Genetics | 1998
Martha Nance; William K. Seltzer; Tetsuo Ashizawa; Robin L. Bennett; Nathalie McIntosh; Richard H. Myers; Nicholas T. Potter; David K. Shea
Martha A. Nance, Hennepin County Medical Center, Minneapolis (cochair); William Seltzer, Athena Diagnostics, Worcester, Massachusetts (cochair); Tetsuo Ashizawa, Baylor College of Medicine, Houston; Robin Bennett, University of Washington, Seattle; Nathalie McIntosh, DIANON Systems, Stratford, Connecticut; Richard H. Myers, Boston University School of Medicine, Boston; Nicholas T. Potter, University of Tennessee, Knoxville; and David K. Shea, Foundation for the Care and Cure of Huntington Disease, Islamorada, Florida.