Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuo Kiso is active.

Publication


Featured researches published by Tetsuo Kiso.


Journal of Pharmacology and Experimental Therapeutics | 2011

Amelioration of Neuropathic Pain by Novel Transient Receptor Potential Vanilloid 1 Antagonist AS1928370 in Rats without Hyperthermic Effect

Tomonari Watabiki; Tetsuo Kiso; Takahiro Kuramochi; Koichi Yonezawa; Noriko Tsuji; Atsuyuki Kohara; Shuichiro Kakimoto; Toshiaki Aoki; Nobuya Matsuoka

Transient receptor potential vanilloid 1 (TRPV1) is activated by a variety of stimulations, such as endogenous ligands and low pH, and is believed to play a role in pain transmission. TRPV1 antagonists have been reported to be effective in several animal pain models; however, some compounds induce hyperthermia in animals and humans. We discovered the novel TRPV1 antagonist (R)-N-(1-methyl-2-oxo-1,2,3,4-tetrahydro-7-quinolyl)-2-[(2-methylpyrrolidin-1-yl)methyl]biphenyl-4-carboxamide (AS1928370) in our laboratory. AS1928370 bound to the resiniferatoxin-binding site on TRPV1 and inhibited capsaicin-mediated inward currents with an IC50 value of 32.5 nM. Although AS1928370 inhibited the capsaicin-induced Ca2+ flux in human and rat TRPV1-expressing cells, the inhibitory effect on proton-induced Ca2+ flux was extremely small. In addition, AS1928370 showed no inhibitory effects on transient receptor potential vanilloid 4, transient receptor potential ankyrin 1, and transient receptor potential melastatin 8 in concentrations up to 10 μM. AS1928370 improved capsaicin-induced secondary hyperalgesia and mechanical allodynia in an L5/L6 spinal nerve ligation model in rats with respective ED50 values of 0.17 and 0.26 mg/kg p.o. Furthermore, AS1928370 alleviated inflammatory pain in a complete Freunds adjuvant model at 10 mg/kg p.o. AS1928370 had no effect on rectal body temperature up to 10 mg/kg p.o., although a significant hypothermic effect was noted at 30 mg/kg p.o. In addition, AS1928370 showed no significant effect on motor coordination. These results suggest that blockage of the TRPV1 receptor without affecting the proton-mediated TRPV1 activation is a promising approach to treating neuropathic pain because of the potential wide safety margin against hyperthermic effects. As such, compounds such as ASP1928370 may have potential as new analgesic agents for treating neuropathic pain.


Neuroscience | 2008

Pharmacological characterization and gene expression profiling of an L5/L6 spinal nerve ligation model for neuropathic pain in mice

Tetsuo Kiso; Tomonari Watabiki; Mina Tsukamoto; M. Okabe; M. Kagami; K. Nishimura; Toshiaki Aoki; Nobuya Matsuoka

L5/L6 spinal nerve ligation (SNL) in rodents induces behavioral signs similar to the symptoms of neuropathic pain in humans. L5/L6 SNL in rats has been well characterized so far, but there have been few studies using mice. In this study, we established an L5/L6 SNL model in mice and examined the effects of known antinociceptive drugs in the model. We also analyzed the changes in gene expression in dorsal root ganglions with special reference to those which are known to change in a neuropathic pain state to validate the model. Mechanical allodynia in the ipsilateral side paw was observed beginning on day 1 and lasted for at least 2 months following surgery. Diclofenac showed no significant effect on the mechanical allodynia. Gabapentin and pregabalin completely reversed allodynia, but they also caused a decrease in locomotor activity. Duloxetine caused a partial recovery of the threshold. Mexiletine completely reversed allodynia, but it also caused sedation or motor impairment. Morphine caused a partial recovery of the threshold and hyper-locomotion. This mouse L5/L6 SNL model represents a robust mechanical allodynia, which shows a similar pharmacological response to that reported in rats and human patients with neuropathic pain. The pattern changes in gene expression also resembled those reported in rats. This model will therefore be useful for investigation of the effects of novel antinociceptive compounds and the mechanisms of neuropathic pain.


Life Sciences | 2011

Enhanced insulin secretion and sensitization in diabetic mice on chronic treatment with a transient receptor potential vanilloid 1 antagonist

Hirotsugu Tanaka; Akiyoshi Shimaya; Tetsuo Kiso; Takahiro Kuramochi; Teruhiko Shimokawa; Masayuki Shibasaki

AIMS Inhibition of transient receptor potential vanilloid 1 (TRPV1) suppresses calcitonin gene-related peptide (CGRP) secretion in pancreatic nerve fiber cells, thereby stimulating insulin secretion. We examined the effects of repeat administration of the TRPV1 antagonist N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamidte monohydrochloride (BCTC) to ob/ob mice, a model of type 2 diabetes with insulin resistance, on whole body glucose and lipid metabolism. MAIN METHODS We measured blood parameters, including levels of glucose, insulin, and triglycerides, and performed the oral glucose tolerance test (OGTT) after repeat administration of BCTC to ob/ob mice twice a day for four weeks. KEY FINDINGS We found that BCTC treatment reduced fasting glucose, triglyceride, and insulin levels in the whole body. The effects were comparable to that of pioglitazone, a major insulin-sensitizing agent. Further, we found that administration of BCTC significantly increased plasma insulin secretion in the OGTT, which differed from the effect of pioglitazone treatment. SIGNIFICANCE Our study is the first to show the anti-diabetic pharmacological effects of the TRPV1 signal inhibitor BCTC. These findings suggest that TRPV1 antagonists may represent a new class of drugs effective in treating type 2 diabetes mellitus because of their dual effects as insulin sensitizers and secretagogues.


Neuropharmacology | 1995

Comparative study of the affinities of the 5-HT3 receptor antagonists, YM060, YM114 (KAE-393), granisetron and ondansetron in rat vagus nerve and cerebral cortex

H. Ito; S. Akuzawa; R. Tsutsumi; Tetsuo Kiso; T. Kamato; A. Nishida; M. Yamano; K. Miyata

The 5-HT3 receptor blocking properties of YM060, YM114 (KAE-393), granisetron and ondansetron were examined in the vagus nerve and cerebral cortex of rats. 5-HT and 2-methyl-5-HT induced dose-dependent depolarizations of rat isolated vagus nerve with EC50 values of 2.53 (1.93-3.33) x 10(-6) and 4.03 (2.87-5.66) x 10(-6) M, respectively. YM060, YM114 and granisetron dose-dependently antagonized the depolarization of the rat vagus nerve induced by 5-HT, with decreases in the slope and maximal response at higher concentrations. Apparent pA2 values for these antagonists were 10.27 +/- 0.09, 10.12 +/- 0.16 and 9.44 +/- 0.40, respectively. Ondansetron produced a clear rightward shift of the concentration-response curve to 5-HT. The pA2 value was 8.63 (8.23-9.68). YM060 and YM114 at up to 10(-5) M produced no significant depression of the depolarizing responses to DMPP and GABA. YM060, YM114, granisetron and ondansetron displaced specific binding of [3H]GR65630 to rat cortical membranes with pKi values of 10.48 (10.41-10.57), 10.24 (10.18-10.28), 9.15 (9.02-9.28) and 8.70 (8.64-8.77), respectively. An excellent correlation (r = 0.97) was obtained between pA2 values in the vagus nerve and pKi values in the cerebral cortex. YM060, YM114, granisetron and ondansetron showed low affinities for 5-HT1A, 5-HT2 receptor, adrenergic alpha 1, alpha 2, dopamine D2, muscarinic M2, mu-opioid, benzodiazepine and histamine H1 receptors. These results support the possibility that the same type of 5-HT3 receptor occurs in rat vagus nerve and cerebral cortex.


European Journal of Pharmacology | 2000

Pharmacological profile of YM-31636, a novel 5-HT3 receptor agonist, in vitro.

Hiroyuki Ito; Tetsuo Kiso; Keiji Miyata; Takeshi Kamato; Hidenobu Yuki; Shinobu Akuzawa; Yukinori Nagakura; Mayumi Yamano; Mami Suzuki; Yuki Naitoh; Hideto Sakai; Kiyoshi Iwaoka; Tokio Yamaguchi

We investigated the in vitro pharmacological profile of YM-31636 (2-(1H-imidazol-4-ylmethyl)-8H-indeno[1,2-d]thiazole monofumarate). In cloned human 5-HT3A receptors, YM-31636 had a pKi value of 9.67 vs. ramosetron and pKi values for other 5-HT3 receptor agonists were less than 7. YM-31636 showed very low affinities for other receptors. YM-31636 induced contraction of isolated guinea pig distal colon. The intrinsic activity was approximately 0.90 compared with 5-hydroxytryptamines (5-HT) 1.0, and the potency was 26 times greater than that of 5-HT. YM-31636 increased short-circuit current (Isc) in the isolated guinea pig distal colon. In this case, the relative intrinsic activity was approximately 0.19. In isolated guinea pig right atrium, YM-31636 induced tachycardia with the relative intrinsic activity of approximately 0.23. All these effects of YM-31636 were antagonized by ramosetron, a selective 5-HT3 receptor antagonist. These results suggest that YM-31636 is a potent and selective 5-HT3 receptor agonist, preferentially acting on the contraction of the colon.


European Journal of Pain | 2012

Automated measurement of spontaneous pain‐associated limb movement and drug efficacy evaluation in a rat model of neuropathic pain

S. Kawasaki-Yatsugi; Yukinori Nagakura; Shuji Ogino; Toshihiro Sekizawa; Tetsuo Kiso; M. Takahashi; G. Ishikawa; H. Ito; Yasuaki Shimizu

The withdrawal response elicited by a nociceptive stimulus, i.e., evoked pain measure, is commonly used as an efficacy endpoint in neuropathic pain animal models. It, however, has several limitations, which highlight the importance of examining spontaneous pain. The present study describes an automated method for measuring spontaneous pain behaviour in a rat model of neuropathic pain caused by chronic constriction injury (CCI) of sciatic nerve.


European Journal of Pharmacology | 2001

A novel 5-HT3 receptor agonist, YM-31636, increases gastrointestinal motility without increasing abdominal pain

Tetsuo Kiso; Hiroyuki Ito; Keiji Miyata; Takeshi Kamato; Yuki Naitoh; Kiyoshi Iwaoka; Tokio Yamaguchi

We examined the effects of YM-31636 (2-(1H-imidazol-4-ylmethyl)-8H-indeno[1,2-d]thiazole monofumarate), a novel 5-HT3 receptor agonist, on gastrointestinal functions including visceral pain reflex in rats. Injection of YM-31636 increased the number of fecal pellets. This effect was completely inhibited by ramosetron, a 5-HT3 receptor antagonist. YM-31636 also increased the intracolonic pressure measured in both conscious and anesthetized rats. In isolated distal colon, YM-31636 increased the short-circuit current response. This effect was abolished by ramosetron. Both the maximal response and the potency of YM-31636 were weaker than those of other 5-HT3 receptor agonists. In two visceral pain reflex models, YM-31636 neither changed the magnitude of pressor response to colonic distension in anesthetized rats nor affected the visceromotor threshold to colorectal distension in conscious rats. In conclusion, YM-31636 facilitated defecation without increasing visceral pain. Consequently, 5-HT3 receptor agonists like YM-31636 would be promising in the treatment of chronic constipation.


European Journal of Pharmacology | 2010

Spinal mechanism of standard analgesics: Evaluation using mouse models of allodynia

Mina Tsukamoto; Tetsuo Kiso; Yukinori Shimoshige; Toshiaki Aoki; Nobuya Matsuoka

Spinal neurotransmission plays an important role in the perception of pain signaling. In the present study, we investigated the spinal anti-nociceptive mechanism of current standard analgesics in mouse models of tactile allodynia induced by intrathecal administration of N-methyl-D-aspartic acid (NMDA), prostaglandin E2 (PGE2), and bicuculline. NMDA-induced allodynia is induced by postsynaptic NMDA receptor activation, while PGE2-induced allodynia is triggered by the enhancement of presynaptic glutamate release via EP1 receptor activation. In contrast, bicuculline induces allodynia by the blockade of gamma-aminobutyric acid (GABA)A receptor-mediated inhibitory system. As the clinically available analgesics, pregabalin (alpha2delta-subunit calcium channel ligand), ziconotide (N-type calcium channel blocker), mexiletine (sodium channel blocker), and duloxetine (serotonin and norepinephrine reuptake inhibitors) were evaluated in these neurochemically-induced allodynia models. Pregabalin almost completely alleviated NMDA-, PGE2-, and bicuculline-induced allodynia. Despite being classified as an agent with a similar molecular target mechanism, ziconotide could only alleviate PGE2-induced allodynia, but not NMDA- or bicuculline-induced allodynia, as did mexiletine and duloxetine. These results taken together suggest that ziconotide, mexiletine, and duloxetine suppress spinal hyperactivity via the presynaptic site mechanism. In contrast, pregabalin could suppress via the downstream step during spinal hyperactivation such as postsynaptic NMDA activation or dysfunction of GABAergic control in addition to presynaptic mechanism. In conclusion, present findings provide implication that the spinal anti-nociceptive mechanistic site of pregabalin is different from that of ziconotide, mexiletine, and duloxetine, and pregabalin could have a broader anti-nociceptive mechanism other than N-type calcium channel blockade.


Life Sciences | 2002

The effect of the selective 5-HT3 receptor agonist on ferret gut motility

Yukinori Nagakura; Tetsuo Kiso; Keiji Miyata; Hiroyuki Ito; Kiyoshi Iwaoka; Tokio Yamaguchi

The effect of the selective 5-hydroxytryptamine (5-HT)(3) receptor agonist YM-31636 (2-(1H-imidazol-4-ylmethyl)-8H-indeno[1,2-d]thiazole monofumarate) on gut motility of fed ferrets was investigated. YM-31636 (0.1 mg/kg p.o.) induced a giant migrating contraction (GMC)-like, high-amplitude, ungrouped colonic contraction although it did not change the basal colonic motility pattern. This GMC-like contraction was always accompanied by defecation. Both GMC-like contraction and defecation were inhibited with the selective 5-HT(3) receptor antagonist ramosetron. YM-31636 affected gastric, duodenal and ileal motility pattern only slightly. These results suggest that 5-HT(3) receptor agonists such as YM-31636 are useful in treating constipation since they facilitate GMC-like contractions and defecation without undesired changes in gut motility pattern.


Bioorganic & Medicinal Chemistry | 2003

New thiazole derivatives as potent and selective 5-hydroxytriptamine 3 (5-HT3) receptor agonists for the treatment of constipation

Naoki Imanishi; Kiyoshi Iwaoka; Hiroyuki Koshio; Shinya Nagashima; Kenichi Kazuta; Mitsuaki Ohta; Shuichi Sakamoto; Hiroyuki Ito; Shinobu Akuzawa; Tetsuo Kiso; Shin-ichi Tsukamoto; Toshiyasu Mase

The syntheses and biological evaluation of a series of novel indeno[1,2-d]thiazole derivatives are described. Several groups reported 5-HT(3) receptor agonists which were mainly evaluated for their activities on the von Bezold-Jarisch reflex (B-J reflex). We discovered that tetrahydrothiazolopyridine derivative 1b had a contractile effect on the isolated guinea pig colon with weak B-J reflex. Our efforts to find a new type of 5-HT(3) receptor agonists on the isolated guinea pig colon focused on the synthesis of a fused thiazole derivative 1d modified from 1b and reverse-fused thiazole derivatives (7-10). In this series, 10f (YM-31636) showed high affinity and selectivity for the cloned human 5-HT(3) receptor; furthermore, it showed potent and selective 5-HT(3) receptor agonistic activity. YM-31636 was examined for its effects on defecation in animals, thus evaluating the compound as an agent against constipation.

Collaboration


Dive into the Tetsuo Kiso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge