Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuro Muraoka is active.

Publication


Featured researches published by Tetsuro Muraoka.


The Journal of Physiology | 2002

In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity

Yasuo Kawakami; Tetsuro Muraoka; S. Ito; Hiroaki Kanehisa; T. Fukunaga

Six men performed a single ankle plantar flexion exercise in the supine position with the maximal effort with counter movement (CM, plantar flexion preceded by dorsiflexion) and without counter movement (NoCM, plantar flexion only) produced by a sliding table that controlled applied load to the ankle (40 % of the maximal voluntary force). The reaction force at the foot and ankle joint angle were measured using a force plate and a goniometer, respectively. From real‐time ultrasonography of the gastrocnemius medialis muscle during the movement, the fascicle length was determined. The estimated peak force, average power, and work at the Achilles’ tendon during the plantar flexion phase in CM were significantly greater than those in NoCM. In CM, in the dorsiflexion phase, fascicle length initially increased with little electromyographic activity, then remained constant while the whole muscle‐tendon unit lengthened, before decreasing in the final plantar flexion phase. In NoCM, fascicle length decreased throughout the movement and the fascicle length at the onset of movement was longer than that of the corresponding phase in CM. It was concluded that during CM muscle fibres optimally work almost isometrically, by leaving the task of storing and releasing elastic energy for enhancing exercise performance to the tendon.


Journal of Biomechanics | 2010

Leg stiffness adjustment for a range of hopping frequencies in humans

Hiroaki Hobara; Koh Inoue; Tetsuro Muraoka; Kohei Omuro; Masanori Sakamoto; Kazuyuki Kanosue

The purpose of the present study was to determine how humans adjust leg stiffness over a range of hopping frequencies. Ten male subjects performed in place hopping on two legs, at three frequencies (1.5, 2.2, and 3.0Hz). Leg stiffness, joint stiffness and touchdown joint angles were calculated from kinetic and/or kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. Leg stiffness increased with an increase in hopping frequency. Hip and knee stiffnesses were significantly greater at 3.0Hz than at 1.5Hz. There was no significant difference in ankle stiffness among the three hopping frequencies. Although there were significant differences in EMG activity among the three hopping frequencies, the largest was the 1.5Hz, followed by the 2.2Hz and then 3.0Hz. The subjects landed with a straighter leg (both hip and knee were extended more) with increased hopping frequency. These results suggest that over the range of hopping frequencies we evaluated, humans adjust leg stiffness by altering hip and knee stiffness. This is accomplished by extending the touchdown joint angles rather than by altering neural activity.


Cells Tissues Organs | 2002

Length Change of Human Gastrocnemius Aponeurosis and Tendon during Passive Joint Motion

Tetsuro Muraoka; Tadashi Muramatsu; Daisuke Takeshita; Yasuo Kawakami; Tetsuo Fukunaga

The extent of elongation and slackness of aponeurosis and tendon, and muscle fiber length of human medial gastrocnemius muscle are determined in vivo using ultrasonography. The ankle joint is passively moved at 5°/s within the joint range of –36 to 7° (0° = neutral anatomic position; positive values for dorsiflexion) by a dynamometer while the length change of the aponeurosis and tendon is determined using ultrasonography (n = 8 men). Strain is calculated as the length change relative to the reference length of aponeurosis and tendon when the passive joint moment is 0. Elongation (positive strain values) of aponeurosis and tendon at 7° are 2.1 ± 1.1 and 2.4 ± 1.0%, respectively. The extent of slackness (negative strain values) of aponeurosis and tendon at –36° are –1.8 ± 1.1 and –3.5 ± 1.6%, respectively, and there is a significant difference between them (p < 0.05). This may be related to the existence of muscle fibers that attach to the aponeurosis over its whole length and do not allow it to fold. The results indicate that the length change of aponeurosis and tendon of medial gastrocnemius muscle occurs over the range of ankle joint positions even during passive joint motions.


Journal of Biomechanics | 2009

Knee stiffness is a major determinant of leg stiffness during maximal hopping

Hiroaki Hobara; Tetsuro Muraoka; Kohei Omuro; Kouki Gomi; Masanori Sakamoto; Koh Inoue; Kazuyuki Kanosue

Understanding stiffness of the lower extremities during human movement may provide important information for developing more effective training methods during sports activities. It has been reported that leg stiffness during submaximal hopping depends primarily on ankle stiffness, but the way stiffness is regulated in maximal hopping is unknown. The goal of this study was to examine the hypothesis that knee stiffness is a major determinant of leg stiffness during the maximal hopping. Ten well-trained male athletes performed two-legged hopping in place with a maximal effort. We determined leg and joint stiffness of the hip, knee, and ankle from kinetic and kinematic data. Knee stiffness was significantly higher than ankle and hip stiffness. Further, the regression model revealed that only knee stiffness was significantly correlated with leg stiffness. The results of the present study suggest that the knee stiffness, rather than those of the ankle or hip, is the major determinant of leg stiffness during maximal hopping.


Neuroscience Research | 2009

Combining observation and imagery of an action enhances human corticospinal excitability.

Masanori Sakamoto; Tetsuro Muraoka; Nobuaki Mizuguchi; Kazuyuki Kanosue

The present study investigated whether combining observation and imagery of an action increased corticospinal excitability over the effects of either manipulation performed alone. Corticospinal excitability was assessed by motor-evoked potentials in the biceps brachii muscle following transcranial magnetic stimulation over the motor cortex during observation, imagery or both. The action utilized was repetitive elbow flexion/extension. Simultaneous observation and imagery of the elbow action facilitated corticospinal excitability as compared to that recorded during observation or imagery alone. However, facilitation due to the combination of observation and imagery was not obtained when the participants imagined the action pattern while they observed the same action presented out of phase. These findings suggest that a combination of observation and imagery can enhance corticospinal excitability. This enhancement depends on phase consistency between the observed and imagined actions.


Journal of Science and Medicine in Sport | 2010

Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects

Hiroaki Hobara; Kozo Kimura; Kohei Omuro; Kouki Gomi; Tetsuro Muraoka; Masanori Sakamoto; Kazuyuki Kanosue

An understanding of lower extremity stiffness is important for evaluation of sports performance and injury prevention. The aim of this study was to investigate whether stiffness regulation during hopping differed between endurance-trained athletes and untrained subjects. Eight endurance-trained athletes and eight untrained subjects performed two-legged hopping at 2.2 Hz. We determined leg and joint stiffness of hip, knee and ankle from kinetic and kinematics data. The endurance-trained athletes demonstrated significantly higher leg stiffness than untrained subjects. Further, the differences in leg stiffness were attributable to differences in ankle and knee joint stiffness. This study demonstrates a possibility that endurance training, like power training, increases leg and joint stiffness.


Journal of Biomechanics | 2002

Superficial aponeurosis of human gastrocnemius is elongated during contraction: implications for modeling muscle-tendon unit

Tadashi Muramatsu; Tetsuro Muraoka; Yasuo Kawakami; Tetsuo Fukunaga

Two questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.6+/-1.2%. There was no significant difference in strain between the proximal and distal parts of the superficial aponeurosis. Based on the present result and that of our previous study for the same subjects (J. Appl. Physiol 90 (2001) 1671), a model was formulated for a contracting uni-pennate muscle-tendon unit. This model, which could be applied to isometric contractions at other angles and therefore of wide use, showed that similar strain between superficial and deep aponeuroses of MG contributed to homogeneous fascicle length change within MG during contractions. These findings would contribute to clarifying the functions of the superficial aponeurosis and the effects of the superficial aponeurosis elongation on the whole muscle behavior.


Experimental Brain Research | 2009

Influence of touching an object on corticospinal excitability during motor imagery

Nobuaki Mizuguchi; Masanori Sakamoto; Tetsuro Muraoka; Kazuyuki Kanosue

We investigated whether corticospinal excitability during the imagery of an action involving an external object was influenced by actually touching the object. Corticospinal excitability was assessed by monitoring motor evoked potentials (MEPs) in the first dorsal interosseous muscle following transcranial magnetic stimulation over the motor cortex during imagery of squeezing a ball—with or without passively holding the ball. The MEPs amplitude during imagery when the ball was held was larger than that when the ball was not held. The MEPs amplitude was not modulated just by holding the ball. In the same experimental condition, the somatosensory evoked potentials (SEPs) in response to the stimulation of median nerve were not modulated by motor imagery or by holding the ball. These results suggest that the corticospinal excitability during imagery of squeezing a ball is enhanced with the real touch of the ball, and the enhancement would be caused by some changes along the corticospinal pathway itself and not by the change in responsiveness along the afferent pathway to the primary somatosensory cortex.


Cells Tissues Organs | 2004

Geometric and Elastic Properties of in vivo Human Achilles Tendon in Young Adults

Tetsuro Muraoka; Tadashi Muramatsu; Tetsuo Fukunaga; Hiroaki Kanehisa

The purpose of this study was to clarify whether the major determinant of the extendibility of the Achilles tendon in young adults was the geometric properties of the tendon. The subjects were 38 healthy young adults (26 male, 12 female; 26 ± 5 years). The subjects developed maximum voluntary isometric plantar flexion (MVIP) torque while the displacement of the distal myotendinous junction of the medial gastrocnemius and ankle joint rotation was determined using a B-mode ultrasonograph and a goniometer, respectively. The tendon force (F) was calculated from MVIP torque and the moment arm of Achilles tendon. The elongation of the Achilles tendon (ΔX) was obtained from the tendon displacements and ankle joint rotation. Achilles tendon stiffness (k) was calculated by dividing F by ΔX. The specific stiffness of the Achilles tendon (ks) was obtained from k normalized to the Achilles tendon length at rest. The cross-sectional area of the Achilles tendon (CSA) was measured at 5, 10, and 15% of the lower leg length proximal to the insertion of the Achilles tendon using a B-mode ultrasonography. The results showed that more distal portion of the Achilles tendon had a larger CSA, and that there was a strong correlation between the average and minimum Achilles tendon CSA. ΔX was 9.9 ± 2.5 mm. k and ks were 330 ± 77 N/mm and 63 ± 20 kN, respectively. No significant correlation was seen between CSA and ks (r = 0.15, p > 0.05). It was suggested that a stiffer Achilles tendon did not necessarily have a thicker shape, which might indicate that the major determinant of the extendibility of the Achilles tendon was not its geometric properties in young adults.


PLOS ONE | 2011

The Modulation of Corticospinal Excitability during Motor Imagery of Actions with Objects

Nobuaki Mizuguchi; Masanori Sakamoto; Tetsuro Muraoka; Kento Nakagawa; Shoichi Kanazawa; Hiroki Nakata; Noriyoshi Moriyama; Kazuyuki Kanosue

We investigated whether corticospinal excitability during motor imagery of actions (the power or the pincer grip) with objects was influenced by actually touching objects (tactile input) and by the congruency of posture with the imagined action (proprioceptive input). Corticospinal excitability was assessed by monitoring motor evoked potentials (MEPs) in the first dorsal interosseous following transcranial magnetic stimulation over the motor cortex. MEPs were recorded during imagery of the power grip of a larger-sized ball (7 cm) or the pincer grip of a smaller-sized ball (3 cm)—with or without passively holding the larger-sized ball with the holding posture or the smaller-sized ball with the pinching posture. During imagery of the power grip, MEPs amplitude was increased only while the actual posture was the same as the imagined action (the holding posture). On the other hand, during imagery of the pincer grip while touching the ball, MEPs amplitude was enhanced in both postures. To examine the pure effect of touching (tactile input), we recorded MEPs during imagery of the power and pincer grip while touching various areas of an open palm with a flat foam pad. The MEPs amplitude was not affected by the palmer touching. These findings suggest that corticospinal excitability during imagery with an object is modulated by actually touching an object through the combination of tactile and proprioceptive inputs.

Collaboration


Dive into the Tetsuro Muraoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroaki Hobara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge