Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuro Shinoda is active.

Publication


Featured researches published by Tetsuro Shinoda.


Developmental Biology | 2009

Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum.

Chieka Minakuchi; Toshiki Namiki; Tetsuro Shinoda

Juvenile hormone (JH) prevents ecdysone-induced metamorphosis in insects. However, our knowledge of the molecular mechanisms of JH action is still fragmented. Krüppel homolog 1 (Kr-h1) is a JH-inducible transcription factor in Drosophila melanogaster (Minakuchi, C., Zhou, X., Riddiford, L.M., 2008b. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech. Dev. 125, 91-105). Analysis of expression of the homologous gene (TcKr-h1) in the beetle Tribolium castaneum showed that its transcript was continuously present in the larval stage but absent in the pupal stage. Artificial suppression of JH biosynthesis in the larval stage caused a precocious larval-pupal transition and a down-regulation of TcKr-h1 mRNA. RNAi-mediated knockdown of TcKr-h1 in the larval stage induced a precocious larval-pupal transition. In the early pupal stage, treatment with an exogenous JH mimic (JHM) caused formation of a second pupa, and a rapid and large induction of TcKr-h1 transcription. JHM-induced formation of a second pupa was counteracted by the knockdown of TcKr-h1. RNAi experiments in combination with JHM treatment demonstrated that in the larval stage TcKr-h1 works downstream of the putative JH receptor Methoprene-tolerant (TcMet), and in the pupal stage it works downstream of TcMet and upstream of the pupal specifier broad (Tcbr). Therefore, TcKr-h1 is an early JH-response gene that mediates JH action linking TcMet and Tcbr.


PLOS ONE | 2008

Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

Naoki Yamanaka; Sachie Yamamoto; Dušan Žitňan; Ken Watanabe; Tsuyoshi Kawada; Honoo Satake; Yu Kaneko; Kiyoshi Hiruma; Yoshiaki Tanaka; Tetsuro Shinoda; Hiroshi Kataoka

Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis

Takumi Kayukawa; Chieka Minakuchi; Toshiki Namiki; Toru Togawa; Michiyo Yoshiyama; Manabu Kamimura; Kazuei Mita; Shigeo Imanishi; Makoto Kiuchi; Yukio Ishikawa; Tetsuro Shinoda

The Krüppel homolog 1 gene (Kr-h1) has been proposed to play a key role in the repression of insect metamorphosis. Kr-h1 is assumed to be induced by juvenile hormone (JH) via a JH receptor, methoprene-tolerant (Met), but the mechanism of induction is unclear. To elucidate the molecular mechanism of Kr-h1 induction, we first cloned cDNAs encoding Kr-h1 (BmKr-h1) and Met (BmMet1 and BmMet2) homologs from Bombyx mori. In a B. mori cell line, BmKr-h1 was rapidly induced by subnanomolar levels of natural JHs. Reporter assays identified a JH response element (kJHRE), comprising 141 nucleotides, located ∼2 kb upstream from the BmKr-h1 transcription start site. The core region of kJHRE (GGCCTCCACGTG) contains a canonical E-box sequence to which Met, a basic helix–loop–helix Per-ARNT-Sim (bHLH–PAS) transcription factor, is likely to bind. In mammalian HEK293 cells, which lack an intrinsic JH receptor, ectopic expression of BmMet2 fused with Gal4DBD induced JH-dependent activity of an upstream activation sequence reporter. Meanwhile, the kJHRE reporter was activated JH-dependently in HEK293 cells only when cotransfected with BmMet2 and BmSRC, another bHLH–PAS family member, suggesting that BmMet2 and BmSRC jointly interact with kJHRE. We also found that the interaction between BmMet2 and BmSRC is dependent on JH. Therefore, we propose the following hypothesis for the mechanism of JH-mediated induction of BmKr-h1: BmMet2 accepts JH as a ligand, JH-liganded BmMet2 interacts with BmSRC, and the JH/BmMet2/BmSRC complex activates BmKr-h1 by interacting with kJHRE.


FEBS Journal | 2008

RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum.

Chieka Minakuchi; Toshiki Namiki; Michiyo Yoshiyama; Tetsuro Shinoda

Juvenile hormone controls the timing of insect metamorphosis. As a final step of juvenile hormone biosynthesis, juvenile hormone acid O‐methyltransferase (JHAMT) transfers the methyl group from S‐adenosyl‐l‐methionine to the carboxyl group of farnesoic acid and juvenile hormone acid. The developmental expression profiles of JHAMT mRNA in the silkworm Bombyx mori and the fruitfly Drosophila melanogaster suggest that the suppression of JHAMT transcription is critical for the induction of larval–pupal metamorphosis, but genetic evidence for JHAMT function in vivo is missing. In this study, we identified three methyltransferase genes in the red flour beetle Tribolium castaneum (TcMT1, TcMT2 and TcMT3) that are homologous to JHAMT of Bombyx and Drosophila. Of these three methyltransferase genes, TcMT3 mRNA was present continuously from the embryonic stage to the final larval instar, became undetectable before pupation, and increased again in the adult stage. TcMT3 mRNA was localized in the larval corpora allata. Recombinant TcMT3 protein methylated farnesoic acid and juvenile hormone III acid, but TcMT1 and TcMT2 proteins did not. Furthermore, RNA interference‐mediated knockdown of TcMT3 in the larval stage resulted in precocious larval–pupal metamorphosis, whereas knockdown of either TcMT1 or TcMT2 showed no visible effects on metamorphosis. Importantly, precocious metamorphosis caused by TcMT3 RNA interference was rescued by an application of a juvenile hormone mimic, methoprene. Together, these results demonstrate that TcMT3 encodes a functional JHAMT gene that is essential for juvenile hormone biosynthesis and for the maintenance of larval status.


Insect Biochemistry and Molecular Biology | 2008

Juvenile hormone acid O-methyltransferase in Drosophila melanogaster

Ryusuke Niwa; Teruyuki Niimi; Naoko Honda; Michiyo Yoshiyama; Kyo Itoyama; Hiroshi Kataoka; Tetsuro Shinoda

Juvenile hormone (JH) acid O-methyltransferase (JHAMT) is the enzyme that transfers a methyl group from S-adenosyl-l-methionine (SAM) to the carboxyl group of JH acids to produce active JHs in the corpora allata. While the JHAMT gene was originally identified and characterized in the silkworm Bombyx mori, no orthologs from other insects have been studied until now. Here we report on the functional characterization of the CG17330/DmJHAMT gene in the fruit fly Drosophila melanogaster. Recombinant DmJHAMT protein expressed in Escherichia coli catalyzes the conversion of farnesoic acid and JH III acid to their cognate methyl esters in the presence of SAM. DmJHAMT is predominantly expressed in corpora allata, and its developmental expression profile correlates with changes in the JH titer. While a transgenic RNA interference against DmJHAMT has no visible effect, overexpression of DmJHAMT results in a pharate adult lethal phenotype, similar to that obtained with application of JH analogs, suggesting that the temporal regulation of DmJHAMT is critical for Drosophila development.


PLOS Genetics | 2012

Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori

Takaaki Daimon; Toshinori Kozaki; Ryusuke Niwa; Isao Kobayashi; Kenjiro Furuta; Toshiki Namiki; Keiro Uchino; Yutaka Banno; Susumu Katsuma; Toshiki Tamura; Kazuei Mita; Hideki Sezutsu; Masayoshi Nakayama; Kyo Itoyama; Toru Shimada; Tetsuro Shinoda

Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.


Insect Biochemistry and Molecular Biology | 2002

cDNA cloning and characterization of Bombyx mori juvenile hormone esterase: an inducible gene by the imidazole insect growth regulator KK-42

Makoto Hirai; Manabu Kamimura; K. Kikuchi; Y. Yasukochi; Makoto Kiuchi; Tetsuro Shinoda; Takahiro Shiotsuki

The insect growth regulator (IGR) imidazole KK-42 induces hemolymph juvenile hormone esterase activity and precocious metamorphosis in Bombyx mori. As an initial step to understand the molecular action of KK-42, we isolated a full-length of juvenile hormone esterase cDNA from B. mori (BmJHE). The deduced amino acid sequence of BmJHE showed high identity to JHEs of Heliothis virescens (54%) and Choristoneura fumiferana (52%). Recombinant BmJHE protein expressed in the baculovirus expression system hydrolyzed 3H-JH III and JH analog, HEPTAT, indicating that BmJHE cDNA encodes functional JH esterase. Northern blot analysis showed that the BmJHE transcript was present predominantly in the fat body at the beginning of the last larval instar. During this instar, BmJHE transcript increased gradually until day 7, then decreased, and increased again on day 10 in the fat body. This temporary expression pattern was similar to that of JHE enzyme activity in hemolymph. In contrast, in the 4th instar, the BmJHE transcript was present in the fat body even though hemolymph JHE activity was very low. Western blot analysis using anti-BmJHE antiserum showed BmJHE protein was present in hemolymph during the 5th instar but not during the 4th instar. These results indicate that BmJHE protein is secreted into hemolymph at the metamorphic stage. Hemolymph JHE activity was high in precociously metamorphosed 4th instar larvae (treated KK-42) but low in normal 4th and extra-molted 6th instar larvae (fed 20E). KK-42-treated larvae showed high expression level of BmJHE transcript in the fat body, suggesting that KK-42 enhances BmJHE gene expression in the fat body.


Insect Biochemistry and Molecular Biology | 2001

Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene

Tetsuro Shinoda; Jun Kobayashi; Masaharu Matsui; Yasuo Chinzei

A Chitinase cDNA named Slchi was cloned from the epidermis of the common cutworm, Spodoptera litura, and the enzymatic properties of its recombinant proteins were characterized. The Slchi cDNA encodes 552 amino-acid residues (aa) including a 19 aa putative signal peptide, with the calculated molecular mass of the putative mature protein 60,152 Da. A major transcript of Slchi about 2.8 kb was detected in the epidermis only during molting in the last instar larvae, suggesting its involvement in the digestive system for old cuticle. The E. coli-produced recombinant Slchi exhibited weak chitinolytic activity against 4MU-(GlcNAc)(3)>4MU-(GlcNAc)(2)>4MU-(GlcNAc)(4), in this order, but not against 4MU-(GlcNAc)(1). A recombinant Slchi with higher specific activity was obtained using recombinant Hyphantria cunea NPV (HycuNPV), which expresses Slchi under polyhedrin promoter. To discriminate chitinase activity of recombinant Slchi from an active chitinase encoded in HycuNPV genome (chiA), we further knocked out the chiA gene from the recombinant virus. The recombinant Slchi expressed in insect cell culture showed a similar substrate specificity against 4MU-(GlcNAc)(n) (n=1-4) to that produced in E. coli, while the viral chitinase showed the highest activity against 4MU-(GlcNAc)(2). The recombinant Slchi was secreted rapidly into the culture medium from the infected cells, whereas the viral chitinase retained predominantly in the cells.


G3: Genes, Genomes, Genetics | 2013

Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

Yoshitaka Suetsugu; Ryo Futahashi; Hiroyuki Kanamori; Keiko Kadono-Okuda; Shun-ichi Sasanuma; Junko Narukawa; Masahiro Ajimura; Akiya Jouraku; Nobukazu Namiki; Michihiko Shimomura; Hideki Sezutsu; Mizuko Osanai-Futahashi; Masataka G. Suzuki; Takaaki Daimon; Tetsuro Shinoda; Kiyoko Taniai; Kiyoshi Asaoka; Ryusuke Niwa; Shinpei Kawaoka; Susumu Katsuma; Toshiki Tamura; Hiroaki Noda; Masahiro Kasahara; Sumio Sugano; Yutaka Suzuki; Haruhiko Fujiwara; Hiroshi Kataoka; Kallare P. Arunkumar; Archana Tomar; Javaregowda Nagaraju

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.


Peptides | 2014

Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens

Yoshiaki Tanaka; Yoshitaka Suetsugu; Kimiko Yamamoto; Hiroaki Noda; Tetsuro Shinoda

The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information.

Collaboration


Dive into the Tetsuro Shinoda's collaboration.

Top Co-Authors

Avatar

Takumi Kayukawa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Sezutsu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiro Shiotsuki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge