Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuro Soejima is active.

Publication


Featured researches published by Tetsuro Soejima.


Nature Chemistry | 2011

Nanocrystal bilayer for tandem catalysis

Yusuke Yamada; Chia-Kuang Tsung; Wenyu Huang; Ziyang Huo; Susan E. Habas; Tetsuro Soejima; Cesar Aliaga; Gabor A. Somorjai; Peidong Yang

Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts.


Journal of the American Chemical Society | 2009

One-Pot Room-Temperature Synthesis of Single-Crystalline Gold Nanocorolla in Water

Tetsuro Soejima; Nobuo Kimizuka

A room-temperature nanocarving strategy is developed for the fabrication of complex gold nanoplates having corolla- and propeller-like architectures. It is based on the simultaneous growth and etching of gold nanoplates in aqueous solution, which occur in the course of photoreduction of Au(OH)(4)(-) ions. The presence of bromide ion, poly(vinylpyrrolidone) (PVP), and molecular oxygen is indispensable, where bromide ions play multiple roles. First, they promote formation of nanoplate structures by forming adlayers on the fcc(111) surface. Second, they facilitate oxidative dissolution of gold nanocrystals by converting the oxidized Au(I) species to soluble AuBr(2)(-) ions, which lead to the formation of ultrathin nanocrevasses. PVP also stabilizes the nucleation of gold nanoplates. Although the overall reactions proceed in one-pot, the crystal growth and etching show interplay and occur with different kinetics due to changes in the concentration of Au(OH)(4)(-) and other species with time. Corolla- or propeller-like gold nanoplates formed under these conditions are single-crystalline, as indicated by selected area electron diffraction patterns and the observation of moire fringes. The morphology of corolla- or propeller-like gold nanoplates is controllable depending on the concentration of bromide ion and PVP in the aqueous mixture. On the basis of these results, a preliminary mechanism is proposed which involves the concurrent crystal growth and oxidative etching on the surface of nanocrystals.


RSC Advances | 2011

One-pot alkaline vapor oxidation synthesis and electrocatalytic activity towards glucose oxidation of CuO nanobelt arrays

Tetsuro Soejima; Hitomi Yagyu; Nobuo Kimizuka; Seishiro Ito

CuO nanobelt arrays supported on copper substrates are synthesized by a simple and one-pot low-temperature vapor oxidation method. The CuO nanobelt arrays show high electrocatalytic activity towards glucose oxidation.


Langmuir | 2012

Synthesis of TiO2 nanocoral structures in ever-changing aqueous reaction systems.

Tetsuro Soejima; Ren-Hua Jin; Yuki Terayama; Atsushi Takahara; Takamasa Shiraishi; Seishiro Ito; Nobuo Kimizuka

A far-from-equilibrium strategy is developed to synthesize coral-like nanostructures of TiO(2) on a variety of surfaces. TiO(2) nanocoral structures consist of anatase base film and rutile nanowire layers, and they are continuously formed on substrates immersed in aqueous TiOSO(4)-H(2)O(2). The sequential deposition of TiO(2) starts with hydrolysis and condensation reactions of titanium peroxocomplexes in the aqueous phase, resulting in deposition of amorphous film. The film serves as adhesive interface on which succeeding growth of rutile nanowires to occur. This initial deposition reaction is accompanied by shift in pH of the reaction media, which is favorable condition for the growth of rutile nanocrystals. During the growth of rutile nanocoral layers, the amorphous base films are transformed to anatase phase. These sequential deposition reactions occur at temperatures as low as 80 °C, and the mild synthetic condition allows the use of a wide range of substrates such as ITO (indium tin oxide), glass, and even organic polymer films. The thickness of nanocoral layer is controllable by repeating the growth reaction of rutile nanocorals. TiO(2) nanocorals show photocatalytic activity as demonstrated by site-specific reduction of Ag(I) ions, which proceeds preferentially on the rutile nanowire layer. The rutile nanowire layer also shows photocatalytic decomposition of acetaldehyde, which is promoted upon increase of the thickness of the nanowire layer. The use of temporally transforming reaction media allows the formation of biphasic TiO(2) nanocoral structures, and the concept of nonequilibrium synthetic approach would be widely applicable to developing structurally graded inorganic nanointerfaces.


Journal of Colloid and Interface Science | 2011

Dense aqueous colloidal gold nanoparticles prepared from highly concentrated precursor solution

Tetsuro Soejima; Seisaku Oshiro; Yasuji Nakatsuji; Seishiro Ito

Gold nanoparticles were fabricated by reduction of highly concentrated Au(III) ions (200 mM) with casein proteins from milk. The gold nanoparticles were converted to nanoparticle-powders after washing and subsequent vacuum drying without aggregation. The nanoparticle-powders completely re-dispersed in aqueous solution, and stable colloidal gold nanoparticles were obtained. UV-vis extinction spectra and dynamic light scattering (DLS) measurements revealed that large assemblies (size, ca. 3 μm) and subaggregates (size, <0.5 μm) composed of gold nanoparticle-casein protein chain-Au(III) ion were dynamically formed and disintegrated over the course of the growth of the gold nanoparticles. Fourier transform infrared (FT-IR) spectra indicated conformational changes of casein proteins induced by the interaction of casein protein-Au(III) ion and -gold nanoparticle. Finally, rapid, one-pot, and highly concentrated synthetic procedures of gold and silver nanoparticle powders protected by casein (mean diameters below 10 nm) were successfully developed using 3-amino-1-propanol aqueous solutions as reaction media. Dense colloidal gold (40 g L(-1)) and silver (22 g L(-1)) nanoparticle aqueous solutions were obtained by re-dispersing the metal nanoparticle powders.


Langmuir | 2014

Light-reducible dissipative nanostructures formed at the solid-liquid interface

Tetsuro Soejima; Yuta Amako; Seishiro Ito; Nobuo Kimizuka

Dissipative structures are macroscopic or even larger ordered structures that emerge under conditions far from thermodynamic equilibrium. In contrast, molecular self-assembly has been investigated near at the thermodynamic equilibrium, which provides basically smaller, nano-to-micron sized structures. In terms of the formation principles, there exists an essential gap between the dissipative structures and molecular self-assemblies. To fill this gap, molecular self-assembly of light-reducible organic-inorganic ion pairs was investigated under far-from-equilibrium conditions. When solid films of tetraalkylammonium hexafluorophosphate were immersed in aqueous Au(OH)4(-) and immediately photoirradiated, gold nanowires are formed at the solid-aqueous interface. On the other hand, such nanowires were not formed when the photoirradiation was conducted for the specimens after a prolonged immersion period of 60 min. These observations indicate spontaneous growth of dissipative nanofibrous self-assemblies consisting of light-reducible ion pairs [tetraalkylammonium ion][Au(OH)4(-)] at the interface and their photoreduction to give developed nanowires. These nanowires are not available by the photoreduction of Au(OH)4(-) ions under conditions near at the thermodynamic equilibrium. A picture for the dissipative nanostructures is obtained: the formation of amphiphilic light-reducible nanowire structures is based on the static self-assembly near at the thermodynamic equilibrium, whereas their spontaneous, anisotropic growth from the interface to the aqueous phase is directed by dynamic, dissipative self-assembly phenomena under the far-from-equilibrium conditions. Thus, the both elements of dissipative self-assembly (dynamic) and static molecular self-assembly fuse together at the nanoscale, which is an essential feature of the dissipative nanostructures.


Journal of Colloid and Interface Science | 2018

Monodisperse manganese oxide nanoparticles: Synthesis, characterization, and chemical reactivity

Tetsuro Soejima; Kazuki Nishizawa; Ryosuke Isoda

Highly monodisperse amorphous manganese oxide (MnOx) nanospheres with diameter of ca. 300nm have been obtained from ammonia aqueous solution of KMnO4 at room temperature. The amorphous MnOx nanospheres successfully converted to monodisperse K-OMS-2 (cryptomelane) and K-OMS-2/Mn2O3 nanoraspberries through calcination process at 600 and 800°C, respectively. Analyzing the structure of such amorphous MnOx has been a challenge because fewer reports are available to examine amorphous structure. Thus, shape, crystallinity, and structure of the amorphous and crystalline MnOx nanostructures were characterized in detail by X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and energy dispersive spectroscopy (EDS). We discussed a plausible formation mechanism of amorphous MnOx nanospheres based on the investigations. The obtained MnOx nanostructures have been demonstrated to possess oxidative degradation ability of Rhodamine B (RhB) under acidic aqueous condition without any additives such as chemical oxidizing agents and UV and/or visible light irradiation. RhB degradation rate of amorphous MnOx nanospheres was about one hundred times faster than that of K-OMS-2 nanoraspberries.


Journal of Physical Chemistry B | 2006

Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2

Tomokazu Kiyonaga; Tomohiro Mitsui; Motofumi Torikoshi; Manabu Takekawa; Tetsuro Soejima; Hiroaki Tada


Journal of the American Chemical Society | 2004

Photoinduced desorption of sulfur from gold nanoparticles loaded on metal oxide surfaces.

Hiroaki Tada; Tetsuro Soejima; Seishiro Ito; Hisayoshi Kobayashi


Langmuir | 2002

Formation of Au Nanoclusters on TiO2 Surfaces by a Two-Step Method Consisting of Au(III)-Complex Chemisorption and Its Photoreduction

Tetsuro Soejima; Hiroaki Tada; Tetsuro Kawahara; Seishiro Ito

Collaboration


Dive into the Tetsuro Soejima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisayoshi Kobayashi

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge