Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuro Urushidani is active.

Publication


Featured researches published by Tetsuro Urushidani.


Molecular Nutrition & Food Research | 2010

The Japanese toxicogenomics project: Application of toxicogenomics

Takeki Uehara; Atsushi Ono; Toshiyuki Maruyama; Ikuo Kato; Hiroshi Yamada; Yasuo Ohno; Tetsuro Urushidani

Biotechnology advances have provided novel methods for the risk assessment of chemicals. The application of microarray technologies to toxicology, known as toxicogenomics, is becoming an accepted approach for identifying chemicals with potential safety problems. Gene expression profiling is expected to identify the mechanisms that underlie the potential toxicity of chemicals. This technology has also been applied to identify biomarkers of toxicity to predict potential hazardous chemicals. Ultimately, toxicogenomics is expected to aid in risk assessment. The following discussion explores potential applications and features of the Japanese Toxicogenomics Project.


Nucleic Acids Research | 2015

Open TG-GATEs: a large-scale toxicogenomics database

Yoshinobu Igarashi; Noriyuki Nakatsu; Tomoya Yamashita; Atsushi Ono; Yasuo Ohno; Tetsuro Urushidani; H. Yamada

Abstract Toxicogenomics focuses on assessing the safety of compounds using gene expression profiles. Gene expression signatures from large toxicogenomics databases are expected to perform better than small databases in identifying biomarkers for the prediction and evaluation of drug safety based on a compounds toxicological mechanisms in animal target organs. Over the past 10 years, the Japanese Toxicogenomics Project consortium (TGP) has been developing a large-scale toxicogenomics database consisting of data from 170 compounds (mostly drugs) with the aim of improving and enhancing drug safety assessment. Most of the data generated by the project (e.g. gene expression, pathology, lot number) are freely available to the public via Open TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System). Here, we provide a comprehensive overview of the database, including both gene expression data and metadata, with a description of experimental conditions and procedures used to generate the database. Open TG-GATEs is available from https://toxico.nibiohn.go.jp/english/index.html.


Toxicology | 2008

A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats

Takeki Uehara; Mitsuhiro Hirode; Atsushi Ono; Naoki Kiyosawa; Ko Omura; Toshinobu Shimizu; Yumiko Mizukawa; Toshikazu Miyagishima; Taku Nagao; Tetsuro Urushidani

For assessing carcinogenicity in animals, it is difficult and costly, an alternative strategy has been desired. We explored the possibility of applying a toxicogenomics approach by using comprehensive gene expression data in rat liver treated with various compounds. As prototypic non-genotoxic hepatocarcinogens, thioacetamide (TAA) and methapyrilene (MP) were selected and 349 commonly changed genes were extracted by statistical analysis. Taking both compounds as positive with six compounds, acetaminophen, aspirin, phenylbutazone, rifampicin, alpha-naphthylisothiocyanate, and amiodarone as negative, prediction analysis of microarray (PAM) was performed. By training and 10-fold cross validation, a classifier containing 112 probe sets that gave an overall success rate of 95% was obtained. The validity of the present discriminator was checked for 30 chemicals. The PAM score showed characteristic time-dependent increases by treatment with several non-genotoxic hepatocarcinogens, including TAA, MP, coumarin, ethionine and WY-14643, while almost all of the non-carcinogenic samples were correctly predicted. Measurement of hepatic glutathione content suggested that MP and TAA cause glutathione depletion followed by a protective increase, but the protective response is exhausted during repeated administration. Therefore, the presently obtained PAM classifier could predict potential non-genotoxic hepatocarcinogenesis within 24 h after single dose and the inevitable pseudo-positives could be eliminated by checking data of repeated administrations up to 28 days. Tests for carcinogenicity using rats takes at least 2 years, while the present work suggests the possibility of lowering the time to 28 days with high precision, at least for a category of non-genotoxic hepatocarcinogens causing oxidative stress.


Toxicology and Applied Pharmacology | 2011

Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database.

Takeki Uehara; Yohsuke Minowa; Yuji Morikawa; Chiaki Kondo; Toshiyuki Maruyama; Ikuo Kato; Noriyuki Nakatsu; Yoshinobu Igarashi; Atsushi Ono; Hitomi Hayashi; Kunitoshi Mitsumori; Hiroshi Yamada; Yasuo Ohno; Tetsuro Urushidani

The present study was performed to develop a robust gene-based prediction model for early assessment of potential hepatocarcinogenicity of chemicals in rats by using our toxicogenomics database, TG-GATEs (Genomics-Assisted Toxicity Evaluation System developed by the Toxicogenomics Project in Japan). The positive training set consisted of high- or middle-dose groups that received 6 different non-genotoxic hepatocarcinogens during a 28-day period. The negative training set consisted of high- or middle-dose groups of 54 non-carcinogens. Support vector machine combined with wrapper-type gene selection algorithms was used for modeling. Consequently, our best classifier yielded prediction accuracies for hepatocarcinogenicity of 99% sensitivity and 97% specificity in the training data set, and false positive prediction was almost completely eliminated. Pathway analysis of feature genes revealed that the mitogen-activated protein kinase p38- and phosphatidylinositol-3-kinase-centered interactome and the v-myc myelocytomatosis viral oncogene homolog-centered interactome were the 2 most significant networks. The usefulness and robustness of our predictor were further confirmed in an independent validation data set obtained from the public database. Interestingly, similar positive predictions were obtained in several genotoxic hepatocarcinogens as well as non-genotoxic hepatocarcinogens. These results indicate that the expression profiles of our newly selected candidate biomarker genes might be common characteristics in the early stage of carcinogenesis for both genotoxic and non-genotoxic carcinogens in the rat liver. Our toxicogenomic model might be useful for the prospective screening of hepatocarcinogenicity of compounds and prioritization of compounds for carcinogenicity testing.


Toxicology and Applied Pharmacology | 2008

Gene expression profiling in rat liver treated with compounds inducing phospholipidosis.

Mitsuhiro Hirode; Atsushi Ono; Toshikazu Miyagishima; Taku Nagao; Yasuo Ohno; Tetsuro Urushidani

We have constructed a large-scale transcriptome database of rat liver treated with various drugs. In an effort to identify a biomarker for diagnosis of hepatic phospholipidosis, we extracted 78 probe sets of rat hepatic genes from data of 5 drugs, amiodarone, amitriptyline, clomipramine, imipramine, and ketoconazole, which actually induced this phenotype. Principal component analysis (PCA) using these probes clearly separated dose- and time-dependent clusters of treated groups from their controls. Moreover, 6 drugs (chloramphenicol, chlorpromazine, gentamicin, perhexiline, promethazine, and tamoxifen), which were reported to cause phospholipidosis but judged as negative by histopathological examination, were designated as positive by PCA using these probe sets. Eight drugs (carbon tetrachloride, coumarin, tetracycline, metformin, hydroxyzine, diltiazem, 2-bromoethylamine, and ethionamide), which showed phospholipidosis-like vacuolar formation in the histopathology, could be distinguished from the typical drugs causing phospholipidosis. Moreover, the possible induction of phospholipidosis was predictable by the expression of these genes 24 h after single administration in some of the drugs. We conclude that these identified 78 probe sets could be useful for diagnosis of phospholipidosis, and that toxicogenomics would be a promising approach for prediction of this type of toxicity.


Toxicology | 2009

Identification of genomic biomarkers for concurrent diagnosis of drug-induced renal tubular injury using a large-scale toxicogenomics database

Chiaki Kondo; Yohsuke Minowa; Takeki Uehara; Yasushi Okuno; Noriyuki Nakatsu; Atsushi Ono; Toshiyuki Maruyama; Ikuo Kato; Jyoji Yamate; Hiroshi Yamada; Yasuo Ohno; Tetsuro Urushidani

Drug-induced renal tubular injury is one of the major concerns in preclinical safety evaluations. Toxicogenomics is becoming a generally accepted approach for identifying chemicals with potential safety problems. In the present study, we analyzed 33 nephrotoxicants and 8 non-nephrotoxic hepatotoxicants to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. The compounds were administered orally or intravenously once daily to male Sprague-Dawley rats. The animals were exposed to four different doses of the compounds, and kidney tissues were collected on days 4, 8, 15, and 29. Gene expression profiles were generated from kidney RNA by using Affymetrix GeneChips and analyzed in conjunction with the histopathological changes. We used the filter-type gene selection algorithm based on t-statistics conjugated with the SVM classifier, and achieved a sensitivity of 90% with a selectivity of 90%. Then, 92 genes were extracted as the genomic biomarker candidates that were used to construct the classifier. The gene list contains well-known biomarkers, such as Kidney injury molecule 1, Ceruloplasmin, Clusterin, Tissue inhibitor of metallopeptidase 1, and also novel biomarker candidates. Most of the genes involved in tissue remodeling, the immune/inflammatory response, cell adhesion/proliferation/migration, and metabolism were predominantly up-regulated. Down-regulated genes participated in cell adhesion/proliferation/migration, membrane transport, and signal transduction. Our classifier has better prediction accuracy than any of the well-known biomarkers. Therefore, the toxicogenomics approach would be useful for concurrent diagnosis of renal tubular injury.


Human & Experimental Toxicology | 2008

Species-specific differences in coumarin-induced hepatotoxicity as an example toxicogenomics-based approach to assessing risk of toxicity to humans

Takeki Uehara; N Kiyosawa; T Shimizu; K Omura; Mitsuhiro Hirode; T Imazawa; Yumiko Mizukawa; Atsushi Ono; Toshikazu Miyagishima; Taku Nagao; Tetsuro Urushidani

One expected result from toxicogenomics technology is to overcome the barrier because of species-specific differences in prediction of clinical toxicity using animals. The present study serves as a model case to test if the well-known species-specific difference in the toxicity of coumarin could be elucidated using comprehensive gene expression data from rat in-vivo, rat in-vitro, and human in-vitro systems. Coumarin 150 mg/kg produced obvious pathological changes in the liver of rats after repeated administration for 7 days or more. Moreover, 24 h after a single dose, we observed minor and transient morphological changes, suggesting that some early events leading to hepatic injury occur soon after coumarin is administered to rats. Comprehensive gene expression changes were analyzed using an Affymetrix GeneChip® approach, and differentially expressed probe sets were statistically extracted. The changes in expression of the selected probe sets were further examined in primary cultured rat hepatocytes exposed to coumarin, and differentially expressed probe sets common to the in-vivo and in-vitro datasets were selected for further study. These contained many genes related to glutathione metabolism and the oxidative stress response. To incorporate human data, human hepatocyte cultured cells were exposed to coumarin and changes in expression of the bridging gene set were examined. In total, we identified 14 up-regulated and 11 down-regulated probe sets representing rat–human bridging genes. The overall responsiveness of these genes to coumarin was much higher in rats than humans, consistent with the reported species difference in coumarin toxicity. Next, we examined changes in expression of the rat–human bridging genes in cultured rat and human hepatocytes treated with another hepatotoxicant, diclofenac sodium, for which hepatotoxicity does not differ between the species. Both rat and human hepatocytes responded to the marker genes to the same extent when the same concentrations of diclofenac sodium were exposed. We conclude that toxicogenomics-based approaches show promise for overcoming species-specific differences that create a bottleneck in analysis of the toxicity of potential therapeutic treatments.


Toxicology | 2012

Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats.

Yohsuke Minowa; Chiaki Kondo; Takeki Uehara; Yuji Morikawa; Yasushi Okuno; Noriyuki Nakatsu; Atsushi Ono; Toshiyuki Maruyama; Ikuo Kato; Jyoji Yamate; Hiroshi Yamada; Yasuo Ohno; Tetsuro Urushidani

Drug-induced renal tubular injury is a major concern in the preclinical safety evaluation of drug candidates. Toxicogenomics is now a generally accepted tool for identifying chemicals with potential safety problems. The specific aim of the present study was to develop a model for use in predicting the future onset of drug-induced proximal tubular injury following repeated dosing with various nephrotoxicants. In total, 41 nephrotoxic and nonnephrotoxic compounds were used for the present analysis. Male Sprague-Dawley rats were dosed orally or intravenously once daily. Animals were exposed to three different doses (low, middle, and high) of each compound, and kidney tissue was collected at 3, 6, 9, and 24 h after single dosing, and on days 4, 8, 15, and 29 after repeated dosing. Gene expression profiles were generated from kidney total RNA using Affymetrix DNA microarrays. Filter-type gene selection and linear classification algorithms were employed to discriminate future onset of proximal tubular injury. We identified genomic biomarkers for use in future onset prediction using the gene expression profiles determined on day 1, when most of the nephrotoxicants had yet to produce detectable histopathological changes. The model was evaluated using a five-fold cross validation, and achieved a sensitivity of 93% and selectivity of 90% with 19 probes. We also found that the prediction accuracy of the optimized model was substantially higher than that produced by any of the single genomic biomarkers or histopathology. The genes included in our model were primarily involved in DNA replication, cell cycle control, apoptosis, and responses to oxidative stress and chemical stimuli. In summary, our toxicogenomic model is particularly useful for predicting the future onset of proximal tubular injury.


Human & Experimental Toxicology | 2011

Effects of DMSO on gene expression in human and rat hepatocytes

Kayo Sumida; Yoshinobu Igarashi; Naoki Toritsuka; Tomochika Matsushita; Kaori Abe-Tomizawa; Mikio Aoki; Tetsuro Urushidani; H. Yamada; Yasuo Ohno

Dimethyl sulfoxide (DMSO) is a very common organic solvent used for dissolving lipophilic substances, for example for in vitro cell-based assays. At the same time, DMSO is known to be cytotoxic at high concentrations. Therefore, it is important to define threshold concentrations of DMSO for cells but relevant data at the molecular level are very limited. We have focused on conducting microarray analyses of human and rat hepatocytes treated with more than 100 chemicals in attempts to identify candidate biomarker genes. In the present study, the effects of DMSO on gene expression and cytotoxicity were assessed in human cryopreserved hepatocytes and rat primary cultured hepatocytes. A cytotoxicity test with lactate dehydrogenase (LDH) activity demonstrated DMSO to be noncytotoxic up to a concentration of 2% (v/v) in both cases and there were only few effects on the gene expression profiles up to 0.5% (v/v). The observed differences from controls were considered to be of little toxicological importance, but still need to be taken into account in interpretation of findings when DMSO is used at high concentration.


Journal of Applied Toxicology | 2014

Identification of metabolomic biomarkers for drug-induced acute kidney injury in rats.

Takeki Uehara; Akira Horinouchi; Yuji Morikawa; Yutaka Tonomura; Keiichi Minami; Atsushi Ono; Jyoji Yamate; H. Yamada; Yasuo Ohno; Tetsuro Urushidani

Nephrotoxicity is a common side effect observed during both nonclinical and clinical drug development investigations. The present study aimed to identify metabolomic biomarkers that could provide early and sensitive indication of nephrotoxicity in rats. Metabolomic analyses were performed using capillary electrophoresis–time‐of‐flight mass spectrometry on rat plasma collected at 9 and 24 h after a single dose of 2‐bromoethylamine or n‐phenylanthranilic acid and at 24 h after 7 days of repeated doses of gentamicin, cyclosporine A or cisplatin. Among a total of 169 metabolites identified, 3‐methylhistidine (3‐MH), 3‐indoxyl sulfate (3‐IS) and guanidoacetate (GAA) were selected as candidate biomarkers. The biological significance and reproducibility of the observed changes were monitored over time in acute nephrotoxicity model rats treated with a single dose of cisplatin, with the glomerular filtration rate monitored by determination of creatinine clearance. Increased plasma levels of 3‐MH and 3‐IS were related to a decline in glomerular filtration due to a renal failure. In contrast, the decrease in plasma GAA, which is synthesized from arginine and glycine in the kidneys, was considered to reflect decreased production due to renal malfunction. Although definitive validation studies are required to confirm their usefulness and reliability, 3‐MH, 3‐IS and GAA may prove to be valuable plasma biomarkers for monitoring nephrotoxicity in rats. Copyright

Collaboration


Dive into the Tetsuro Urushidani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeki Uehara

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Morikawa

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiro Hirode

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge