Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsushi Sakuma is active.

Publication


Featured researches published by Tetsushi Sakuma.


Stem cell reports | 2015

Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.

Hongmei Lisa Li; Naoko Fujimoto; Noriko Sasakawa; Saya Shirai; Tokiko Ohkame; Tetsushi Sakuma; Michihiro Tanaka; Naoki Amano; Akira Watanabe; Hidetoshi Sakurai; Takashi Yamamoto; Shinya Yamanaka; Akitsu Hotta

Summary Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases.


Nature Communications | 2014

Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9

Shota Nakade; Takuya Tsubota; Yuto Sakane; Satoshi Kume; Naoaki Sakamoto; Masanobu Obara; Takaaki Daimon; Hideki Sezutsu; Takashi Yamamoto; Tetsushi Sakuma; Ken-ichi Suzuki

Genome engineering using programmable nucleases enables homologous recombination (HR)-mediated gene knock-in. However, the labour used to construct targeting vectors containing homology arms and difficulties in inducing HR in some cell type and organisms represent technical hurdles for the application of HR-mediated knock-in technology. Here, we introduce an alternative strategy for gene knock-in using transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) mediated by microhomology-mediated end-joining, termed the PITCh (Precise Integration into Target Chromosome) system. TALEN-mediated PITCh, termed TAL-PITCh, enables efficient integration of exogenous donor DNA in human cells and animals, including silkworms and frogs. We further demonstrate that CRISPR/Cas9-mediated PITCh, termed CRIS-PITCh, can be applied in human cells without carrying the plasmid backbone sequence. Thus, our PITCh-ing strategies will be useful for a variety of applications, not only in cultured cells, but also in various organisms, including invertebrates and vertebrates.


Scientific Reports | 2015

Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system

Tetsushi Sakuma; Ayami Nishikawa; Satoshi Kume; Kazuaki Chayama; Takashi Yamamoto

CRISPR/Cas9-mediated genome editing is a next-generation strategy for genetic modifications, not only for single gene targeting, but also for multiple targeted mutagenesis. To make the most of the multiplexity of CRISPR/Cas9, we established a system for constructing all-in-one expression vectors containing multiple guide RNA expression cassettes and a Cas9 nuclease/nickase expression cassette. We further demonstrated successful examples of multiple targeting including chromosomal deletions in human cells using the all-in-one CRISPR/Cas9 vectors constructed with our novel system. Our system provides an efficient targeting strategy for multiplex genome/epigenome editing, simultaneous activation/repression of multiple genes, and beyond.


Genes to Cells | 2013

Efficient TALEN construction and evaluation methods for human cell and animal applications

Tetsushi Sakuma; Sayaka Hosoi; Knut Woltjen; Ken Ichi Suzuki; Keiko Kashiwagi; Housei Wada; Hiroshi Ochiai; Tatsuo Miyamoto; Narudo Kawai; Yasunori Sasakura; Shinya Matsuura; Yasushi Okada; Atsuo Kawahara; Shigeo Hayashi; Takashi Yamamoto

Transcription activator–like effector nucleases (TALENs) have recently arisen as effective tools for targeted genome engineering. Here, we report streamlined methods for the construction and evaluation of TALENs based on the ‘Golden Gate TALEN and TAL Effector Kit’ (Addgene). We diminished array vector requirements and increased assembly rates using six‐module concatemerization. We altered the architecture of the native TALEN protein to increase nuclease activity and replaced the final destination vector with a mammalian expression/in vitro transcription vector bearing both CMV and T7 promoters. Using our methods, the whole process, from initiating construction to completing evaluation directly in mammalian cells, requires only 1 week. Furthermore, TALENs constructed in this manner may be directly applied to transfection of cultured cells or mRNA synthesis for use in animals and embryos. In this article, we show genomic modification of HEK293T cells, human induced pluripotent stem cells, Drosophila melanogaster, Danio rerio and Xenopus laevis, using custom‐made TALENs constructed and evaluated with our protocol. Our methods are more time efficient compared with conventional yeast‐based evaluation methods and provide a more accessible and effective protocol for the application of TALENs in various model organisms.


Scientific Reports | 2013

Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity

Tetsushi Sakuma; Hiroshi Ochiai; Takehito Kaneko; Tomoji Mashimo; Daisuke Tokumasu; Yuto Sakane; Ken-ichi Suzuki; Tatsuo Miyamoto; Naoaki Sakamoto; Shinya Matsuura; Takashi Yamamoto

Transcription activator-like effector (TALE) nuclease (TALEN) is a site-specific nuclease, which can be freely designed and easily constructed. Numerous methods of constructing TALENs harboring different TALE scaffolds and repeat variants have recently been reported. However, the functionalities of structurally different TALENs have not yet been compared. Here, we report on the functional differences among several types of TALENs targeting the same loci. Using HEK293T cell-based single-strand annealing and Cel-I nuclease assays, we found that TALENs with periodically-patterned repeat variants harboring non-repeat-variable di-residue (non-RVD) variations (Platinum TALENs) showed higher activities than TALENs without non-RVD variations. Furthermore, the efficiencies of gene disruption mediated by Platinum TALENs in frogs and rats were significantly higher than in previous reports. This study therefore demonstrated an efficient system for the construction of these highly active Platinum TALENs (Platinum Gate system), which could establish a new standard in TALEN engineering.


Cell Stem Cell | 2015

Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells.

Kotaro Sasaki; Shihori Yokobayashi; Tomonori Nakamura; Ikuhiro Okamoto; Yukihiro Yabuta; Kazuki Kurimoto; Hiroshi Ohta; Yoshinobu Moritoki; Chizuru Iwatani; Hideaki Tsuchiya; Shinichiro Nakamura; Kiyotoshi Sekiguchi; Tetsushi Sakuma; Takashi Yamamoto; Takahide Mori; Knut Woltjen; Masato Nakagawa; Takuya Yamamoto; Kazutoshi Takahashi; Shinya Yamanaka; Mitinori Saitou

Mechanisms underlying human germ cell development are unclear, partly due to difficulties in studying human embryos and lack of suitable experimental systems. Here, we show that human induced pluripotent stem cells (hiPSCs) differentiate into incipient mesoderm-like cells (iMeLCs), which robustly generate human primordial germ cell-like cells (hPGCLCs) that can be purified using the surface markers EpCAM and INTEGRINα6. The transcriptomes of hPGCLCs and primordial germ cells (PGCs) isolated from non-human primates are similar, and although specification of hPGCLCs and mouse PGCs rely on similar signaling pathways, hPGCLC specification transcriptionally activates germline fate without transiently inducing eminent somatic programs. This includes genes important for naive pluripotency and repression of key epigenetic modifiers, concomitant with epigenetic reprogramming. Accordingly, BLIMP1, which represses somatic programs in mice, activates and stabilizes a germline transcriptional circuit and represses a default neuronal differentiation program. Together, these findings provide a foundation for understanding and reconstituting human germ cell development in vitro.


Genome Biology | 2015

Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice.

Tomomi Aida; Keiho Chiyo; Takako Usami; Harumi Ishikubo; Risa Imahashi; Yusaku Wada; Kenji F. Tanaka; Tetsushi Sakuma; Takashi Yamamoto; Kohichi Tanaka

Although the CRISPR/Cas system has enabled one-step generation of knockout mice, low success rates of cassette knock-in limit its application range. Here we show that cloning-free, direct nuclear delivery of Cas9 protein complex with chemically synthesized dual RNAs enables highly efficient target digestion, leading to generation of knock-in mice carrying a functional cassette with up to 50% efficiency, compared with just 10% by a commonly used method consisting of Cas9 mRNA and single guide RNA. Our cloning-free CRISPR/Cas system facilitates rapid one-step generation of cassette knock-in mice, accelerating functional genomic research by providing various in vivo genetic tools.


Nature Communications | 2012

Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases

Takahito Watanabe; Hiroshi Ochiai; Tetsushi Sakuma; Hadley Wilson Horch; Naoya Hamaguchi; Taro Nakamura; Tetsuya Bando; Hideyo Ohuchi; Takashi Yamamoto; Sumihare Noji; Taro Mito

Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically relatively basal and comprise many pests. However, the absence of a sophisticated genetic model system, or targeted gene-manipulation system, has limited research on hemimetabolous species. Here we use zinc-finger nuclease and transcription activator-like effector nuclease technologies to produce genetic knockouts in the hemimetabolous insect Gryllus bimaculatus. Following the microinjection of mRNAs encoding zinc-finger nucleases or transcription activator-like effector nucleases into cricket embryos, targeting of a transgene or endogenous gene results in sequence-specific mutations. Up to 48% of founder animals transmit disrupted gene alleles after zinc-finger nucleases microinjection compared with 17% after microinjection of transcription activator-like effector nucleases. Heterozygous offspring is selected using mutation detection assays that use a Surveyor (Cel-I) nuclease, and subsequent sibling crosses create homozygous knockout crickets. This approach is independent from a mutant phenotype or the genetic tractability of the organism of interest and can potentially be applied to manage insect pests using a non-transgenic strategy.


Scientific Reports | 2015

Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish

Yu Hisano; Tetsushi Sakuma; Shota Nakade; Rie Ohga; Satoshi Ota; Hitoshi Okamoto; Takashi Yamamoto; Atsuo Kawahara

The CRISPR/Cas9 system provides a powerful tool for genome editing in various model organisms, including zebrafish. The establishment of targeted gene-disrupted zebrafish (knockouts) is readily achieved by CRISPR/Cas9-mediated genome modification. Recently, exogenous DNA integration into the zebrafish genome via homology-independent DNA repair was reported, but this integration contained various mutations at the junctions of genomic and integrated DNA. Thus, precise genome modification into targeted genomic loci remains to be achieved. Here, we describe efficient, precise CRISPR/Cas9-mediated integration using a donor vector harbouring short homologous sequences (10–40 bp) flanking the genomic target locus. We succeeded in integrating with high efficiency an exogenous mCherry or eGFP gene into targeted genes (tyrosinase and krtt1c19e) in frame. We found the precise in-frame integration of exogenous DNA without backbone vector sequences when Cas9 cleavage sites were introduced at both sides of the left homology arm, the eGFP sequence and the right homology arm. Furthermore, we confirmed that this precise genome modification was heritable. This simple method enables precise targeted gene knock-in in zebrafish.


Nature Protocols | 2016

MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems

Tetsushi Sakuma; Shota Nakade; Yuto Sakane; Ken-ichi Suzuki; Takashi Yamamoto

Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5–25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes ∼1.5 months to establish knocked-in cells or ∼1 week from injection to early genotyping in frog embryos.

Collaboration


Dive into the Tetsushi Sakuma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge