Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Goshima is active.

Publication


Featured researches published by Tetsuya Goshima.


EMBO Reports | 2005

Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment.

Kazuhide Asakawa; Mika Toya; Masamitsu Sato; Muneyoshi Kanai; Kazunori Kume; Tetsuya Goshima; Miguel Angel Garcia; Dai Hirata; Takashi Toda

Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis‐segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis‐segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1‐dependent checkpoint.


Journal of Biological Chemistry | 2010

Fission Yeast Germinal Center (GC) Kinase Ppk11 Interacts with Pmo25 and Plays an Auxiliary Role in Concert with the Morphogenesis Orb6 Network (MOR) in Cell Morphogenesis

Tetsuya Goshima; Kazunori Kume; Takayuki Koyano; Yoshikazu Ohya; Takashi Toda; Dai Hirata

How cell morphology and the cell cycle are coordinately regulated is a fundamental subject in cell biology. In fission yeast, 2 germinal center kinases (GCKs), Sid1 and Nak1, play an essential role in septation/cytokinesis and cell separation/cell polarity control, respectively, as components of the septation initiation network (SIN) and the morphogenesis Orb6 network (MOR). Here we show that a third GCK, Ppk11, is also required for efficient cell separation particularly, at a high temperature. Although Ppk11 is not essential for cell division, this kinase plays an auxiliary role in concert with MOR in cell morphogenesis. Ppk11 physically interacts with the MOR component Pmo25 and is localized to the septum, by which Ppk11 is crucial for Pmo25 targeting/accumulation to the septum. The conserved C-terminal WDF motif of Ppk11 is essential for both septum accumulation of Pmo25 and efficient cell separation. In contrast its kinase activity is required only for cell separation. Thus, both interaction of Ppk11 with Pmo25 and Ppk11 kinase activity are critical for efficient cell separation.


Bioscience, Biotechnology, and Biochemistry | 2016

Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801

Tetsuya Goshima; Ryo Nakamura; Kazunori Kume; Hiroki Okada; Eri Ichikawa; Hiroyasu Tamura; Hirokazu Hasuda; Masaaki Inahashi; Naoto Okazaki; Takeshi Akao; Hitoshi Shimoi; Masaki Mizunuma; Yoshikazu Ohya; Dai Hirata

In high-quality sake brewing, the cerulenin-resistant sake yeast K1801 with high ethyl caproate-producing ability has been used widely; however, K1801 has a defective spindle assembly checkpoint (SAC). To identify the mutation causing this defect, we first searched for sake yeasts with a SAC-defect like K1801 and found that K13 had such a defect. Then, we searched for a common SNP in only K1801 and K13 by examining 15 checkpoint-related genes in 23 sake yeasts, and found 1 mutation, R48P of Cdc55, the PP2A regulatory B subunit that is important for the SAC. Furthermore, we confirmed that the Cdc55-R48P mutation was responsible for the SAC-defect in K1801 by molecular genetic analyses. Morphological analysis indicated that this mutation caused a high cell morphological variation. But this mutation did not affect the excellent brewing properties of K1801. Thus, this mutation is a target for breeding of a new risk-free K1801 with normal checkpoint integrity. Graphical abstract K1801 (triploid) having 2 copies of R48P-type cdc55 and 1 copy of R48-type cdc55 showed a defective spindle assembly checkpoint (SAC). Cdc55-R48P is semidominant mutation in the SAC function.


Yeast | 2015

The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts

Kun Wan; Haruka Kawara; Tomoyuki Yamamoto; Kazunori Kume; Yukari Yabuki; Tetsuya Goshima; Kenji Kitamura; Masaru Ueno; Muneyoshi Kanai; Dai Hirata; Kouichi Funato; Keiko Mizuta

The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature‐sensitive fission yeast strains, rrs1‐D14/22G and rrs1‐L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1‐84 (D22/30G) and rrs1‐124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two‐hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts. Copyright


Bioscience, Biotechnology, and Biochemistry | 2015

Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity

Hiroyasu Tamura; Hiroki Okada; Kazunori Kume; Takayuki Koyano; Tetsuya Goshima; Ryo Nakamura; Takeshi Akao; Hitoshi Shimoi; Masaki Mizunuma; Yoshikazu Ohya; Dai Hirata

In the brewing of high-quality sake such as Daiginjo-shu, the cerulenin-resistant sake yeast strains with high producing ability to the flavor component ethyl caproate have been used widely. Genetic stability of sake yeast would be important for the maintenance of both fermentation properties of yeast and quality of sake. In eukaryotes, checkpoint mechanisms ensure genetic stability. However, the integrity of these mechanisms in sake yeast has not been examined yet. Here, we investigated the checkpoint integrity of sake yeasts, and the results suggested that a currently used cerulenin-resistant sake yeast had a defect in spindle assembly checkpoint (SAC). We also isolated a spontaneous cerulenin-resistant sake yeast FAS2-G1250S mutant, G9CR, which showed both high ethyl caproate-producing ability and integrity/intactness of the checkpoint mechanisms. Further, morphological phenotypic robustness analysis by use of CalMorph supported the genetic stability of G9CR. Finally, we confirmed the high quality of sake from G9CR in an industrial sake brewing setting. Graphical Abstract Cerulenin (lower structure)-resistant sake yeast G9CR (green/cell wall, red/actin, blue/nucleus) with both high productivity of ethyl caproate (upper structure) and normal checkpoint integrity.


G3: Genes, Genomes, Genetics | 2017

Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding

Shinsuke Ohnuki; Hiroki Okada; Anne Friedrich; Yoichiro Kanno; Tetsuya Goshima; Hirokazu Hasuda; Masaaki Inahashi; Naoto Okazaki; Hiroyasu Tamura; Ryo Nakamura; Dai Hirata; Hisashi Fukuda; Hitoshi Shimoi; Katsuhiko Kitamoto; Daisuke Watanabe; Joseph Schacherer; Takeshi Akao; Yoshikazu Ohya

Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies.


Bioscience, Biotechnology, and Biochemistry | 2007

A Method for Pmo25-Associated Kinase Assay in Fission Yeast: The Activity Is Dependent on Two GC Kinases Nak1 and Sid1

Kazunori Kume; Tetsuya Goshima; Kohji Miyahara; Takashi Toda; Dai Hirata

In fission yeast, the conserved proteins, MO25/Pmo25, GC kinase/Nak1, Furry/Mor2, NDR kinase/Orb6, and Mob2, constitute the morphogenesis Orb6 network (MOR). Previously we showed that Pmo25 functions as an upstream component of MOR and that it plays a connecting role between the septation initiation network (SIN) and MOR. Here we establish a Pmo25-associated kinase assay and show that the activity is dependent on Nak1/MOR and Sid1/SIN.


eLife | 2016

Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

Illyce Nuñez; Marbelys Rodriguez Pino; David J. Wiley; Maitreyi Das; Chuan Chen; Tetsuya Goshima; Kazunori Kume; Dai Hirata; Takashi Toda; Fulvia Verde

RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.14216.001


PLOS ONE | 2018

MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast

Takumi Ohdate; Fumihiko Omura; Haruyo Hatanaka; Yan Zhou; Masami Takagi; Tetsuya Goshima; Takeshi Akao; Eiichiro Ono

For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.


Molecular Biology of the Cell | 2005

The V260I Mutation in Fission Yeast α-Tubulin Atb2 Affects Microtubule Dynamics and EB1-Mal3 Localization and Activates the Bub1 Branch of the Spindle Checkpoint

Kazuhide Asakawa; Kazunori Kume; Muneyoshi Kanai; Tetsuya Goshima; Kohji Miyahara; Susheela Dhut; Wee Wei Tee; Dai Hirata; Takashi Toda

Collaboration


Dive into the Tetsuya Goshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge