Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Higashiyama is active.

Publication


Featured researches published by Tetsuya Higashiyama.


Nature | 2004

Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D

Motomichi Matsuzaki; Osami Misumi; Tadasu Shin-I; Shinichiro Maruyama; Manabu Takahara; Shin-ya Miyagishima; Toshiyuki Mori; Keiji Nishida; Fumi Yagisawa; Keishin Nishida; Yamato Yoshida; Yoshiki Nishimura; Shunsuke Nakao; Tamaki Kobayashi; Yu Momoyama; Tetsuya Higashiyama; Ayumi Minoda; Masako Sano; Hisayo Nomoto; Kazuko Oishi; Hiroko Hayashi; Fumiko Ohta; Satoko Nishizaka; Shinobu Haga; Sachiko Miura; Tomomi Morishita; Yukihiro Kabeya; Kimihiro Terasawa; Yutaka Suzuki; Yasuyaki Ishii

Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.


Nature | 2009

Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells

Satohiro Okuda; Hiroki Tsutsui; Keiko Shiina; Stefanie Sprunck; Hidenori Takeuchi; Ryoko Yui; Ryushiro D. Kasahara; Yuki Hamamura; Akane Mizukami; Daichi Susaki; Nao Kawano; Takashi Sakakibara; Shoko Namiki; Kie Itoh; Kurataka Otsuka; Motomichi Matsuzaki; Hisayoshi Nozaki; Tsuneyoshi Kuroiwa; Akihiko Nakano; Masahiro M. Kanaoka; Thomas Dresselhaus; Narie Sasaki; Tetsuya Higashiyama

For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.


Nature Cell Biology | 2006

GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization

Toshiyuki Mori; Haruko Kuroiwa; Tetsuya Higashiyama; Tsuneyoshi Kuroiwa

The double fertilization process in angiosperms is based on the delivery of a pair of sperm cells by the pollen tube (the male gametophyte), which elongates towards an embryo sac (the female gametophyte) enclosing an egg and a central cell. Several studies have described the mechanisms of gametophyte interaction, and also the fertilization process — from pollination to pollen tube acceptance. However, the mechanisms of gamete interaction are not fully understood. Cytological studies have shown that male gametes possess distinct cell-surface structures and genes specific to male gametes have been detected in cDNA libraries. Thus, studies of isolated gametes may offer clues to understanding the sperm–egg interaction. In this study, we identified a novel protein, designated GCS1 (GENERATIVE CELL SPECIFIC 1), using generative cells isolated from Lilium longiflorum pollen. GCS1 possesses a carboxy-terminal transmembrane domain, and homologues are present in various species, including non-angiosperms. Immunological assays indicate that GCS1 is accumulated during late gametogenesis and is localized on the plasma membrane of generative cells. In addition, Arabidopsis thaliana GCS1 mutant gametes fail to fuse, resulting in male sterility and suggesting that GCS1 is a critical fertilization factor in angiosperms.


Journal of Histochemistry and Cytochemistry | 1997

DNA Staining for Fluorescence and Laser Confocal Microscopy

Takeshi Suzuki; Keiko Fujikura; Tetsuya Higashiyama; Kuniaki Takata

We examined five nucleic acid binding fluorescent dyes, propidium iodide, SYBR Green I, YO-PRO-1, TOTO-3, and TO-PRO-3, for nuclear DNA staining, visualized by fluorescence and laser confocal microscopy. The optimal concentration, co-staining of RNA, and bleaching speeds were examined. SYBR Green I and TO-PRO-3 almost preferentially stained the nuclear DNA, and the other dyes co-stained the cytoplasmic RNA. RNAse treatment completely prevented the cytoplasmic RNA staining. In conventional fluorescence microscopy, these dyes can be used in combination with fluorescence-labeled antibodies. Among the dyes tested, TOTO-3 and TO-PRO-3 stained the DNAs with far-red fluorescence under red excitation. Under Kr/Ar-laser illumination, TOTO-3 and TO-PRO-3 were best suited as the nuclear staining dyes in the specimens immunolabeled with fluorescein and rhodamine (or Texas red).


Current Biology | 2007

Distinct Dynamics of HISTONE3 Variants between the Two Fertilization Products in Plants

Mathieu Ingouff; Yuki Hamamura; Mathieu Gourgues; Tetsuya Higashiyama; Frédéric Berger

Sexual reproduction involves epigenetic reprogramming comprising DNA methylation and histone modifications. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 and the centromeric Histone Three Related 12 (HTR12). The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms.


The Plant Cell | 1998

Guidance in Vitro of the Pollen Tube to the Naked Embryo Sac of Torenia fournieri

Tetsuya Higashiyama; Haruko Kuroiwa; Shigeyuki Kawano; Tsuneyoshi Kuroiwa

The precise guidance of the pollen tube to the embryo sac is critical to the successful sexual reproduction of flowering plants. We demonstrate here the guidance of the pollen tube to the embryo sac in vitro by using the naked embryo sac of Torenia fournieri, which protrudes from the micropyle of the ovule. We developed a medium for culture of both the ovule and the pollen tube of T. fournieri and cocultivated them in a thin layer of solid medium. Although pollen tubes that had germinated in vitro passed naked embryo sacs, some pollen tubes that grew semi–in vitro through a cut style arrived precisely at the site of entry into the embryo sac, namely, the filiform apparatus of the synergids. When pollen tubes were unable to enter the embryo sac, they continuously grew toward the same filiform apparatus, forming narrow coils. Pollen tubes selectively arrived at complete, unfertilized embryo sacs but did not arrive at those of heat-treated ovules or those with disrupted synergids. These results convincingly demonstrate that pollen tubes are specifically attracted to the region of the filiform apparatus of living synergids in vitro.


The Plant Cell | 2003

A Plant-Specific Dynamin-Related Protein Forms a Ring at the Chloroplast Division Site

Shin-ya Miyagishima; Keiji Nishida; Toshiyuki Mori; Motomichi Matsuzaki; Tetsuya Higashiyama; Haruko Kuroiwa; Tsuneyoshi Kuroiwa

Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plant-specific group of dynamins from the primitive red alga Cyanidioschyzon merolae. Synchronization of chloroplast division and immunoblot analyses showed that the protein (CmDnm2) associates with the chloroplast only during division. Immunocytochemical analyses showed that CmDnm2 appears in cytoplasmic patches just before chloroplast division and is recruited to the cytosolic side of the chloroplast division site to form a ring in the late stage of division. The ring constricts until division is complete, after which it disappears. These results show that a dynamin-related protein also participates in chloroplast division and that its behavior differs from that of FtsZ and plastid-dividing rings that form before constriction at the site of division. Combined with the results of a recent study of mitochondrial division in Cyanidioschyzon, our findings led us to hypothesize that when first established in lower eukaryotes, mitochondria and chloroplasts divided using a very similar system that included the FtsZ ring, the plastid-dividing/mitochondrion-dividing ring, and the dynamin ring.


PLOS Biology | 2012

A Species-Specific Cluster of Defensin-Like Genes Encodes Diffusible Pollen Tube Attractants in Arabidopsis

Hidenori Takeuchi; Tetsuya Higashiyama

AtLURE1 defensin-like peptides, which show species-specific evolution, are essential in Arabidopsis for attracting pollen tubes and can function in the breakdown of reproductive isolation barriers.


Trends in Plant Science | 2008

Double fertilization – caught in the act

Frédéric Berger; Yuki Hamamura; Mathieu Ingouff; Tetsuya Higashiyama

In flowering plants, fertilization is unique because it involves two pairs of male and female gametes, a process known as double fertilization. Here, we provide an overview of the field and a detailed review of the outstanding recent advances, including in vivo imaging of double fertilization and the identification of a signaling pathway controlling the release of the male gametes and of a protein involved in gamete membrane fusion. These recent results are stepping stones for further research; our knowledge of double fertilization is expanding as newly discovered molecular pathways are explored and new mutants are characterized. Controlling plant fertilization is essential for seed production, and molecular understanding of double fertilization will provide the tools to improve crops and breeding programs.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcriptional repressor PRR5 directly regulates clock-output pathways

Norihito Nakamichi; Takatoshi Kiba; Mari Kamioka; Takamasa Suzuki; Takafumi Yamashino; Tetsuya Higashiyama; Hitoshi Sakakibara; Takeshi Mizuno

The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external daily cycles. The clock coordinates biological activities with these cycles, mainly through genome-wide gene expression. However, the exact mechanism underlying regulation of circadian gene expression is poorly understood. Here we demonstrated that an Arabidopsis PSEUDO-RESPONSE REGULATOR 5 (PRR5), which acts in the clock genetic circuit, directly regulates expression timing of key transcription factors involved in clock-output pathways. A transient expression assay and ChIP-quantitative PCR assay using mutated PRR5 indicated that PRR5 associates with target DNA through binding at the CCT motif in vivo. ChIP followed by deep sequencing coupled with genome-wide expression profiling revealed the direct-target genes of PRR5. PRR5 direct-targets include genes encoding transcription factors involved in flowering-time regulation, hypocotyl elongation, and cold-stress responses. PRR5-target gene expression followed a circadian rhythm pattern with low, basal expression from noon until midnight, when PRR9, PRR7, and PRR5 were expressed. ChIP-quantitative PCR assays indicated that PRR7 and PRR9 bind to the direct-targets of PRR5. Genome-wide expression profiling using a prr9 prr7 prr5 triple mutant suggests that PRR5, PRR7, and PRR9 repress these targets. Taken together, our results illustrate a genetic network in which PRR5, PRR7, and PRR9 directly regulate expression timing of key transcription factors to coordinate physiological processes with daily cycles.

Collaboration


Dive into the Tetsuya Higashiyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge