Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Iida is active.

Publication


Featured researches published by Tetsuya Iida.


The Lancet | 2003

Genome sequence of Vibrio parahaemolyticus : a pathogenic mechanism distinct from that of V. cholerae

Kozo Makino; Kenshiro Oshima; Ken Kurokawa; Katsushi Yokoyama; Takayuki Uda; Kenichi Tagomori; Yoshio Iijima; Masatomo Najima; Masayuki Nakano; Atsushi Yamashita; Yoshino Kubota; Shigenobu Kimura; Teruo Yasunaga; Takeshi Honda; Hideo Shinagawa; Masahira Hattori; Tetsuya Iida

BACKGROUNDnVibrio parahaemolyticus, a gram-negative marine bacterium, is a worldwide cause of food-borne gastroenteritis. V parahaemolyticus strains of a few specific serotypes, probably derived from a common clonal ancestor, have lately caused a pandemic of gastroenteritis. The organism is phylogenetically close to V cholerae, the causative agent of cholera.nnnMETHODSnThe whole genome sequence of a clinical V parahaemolyticus strain RIMD2210633 was established by shotgun sequencing. The coding sequences were identified by use of Gambler and Glimmer programs. Comparative analysis with the V cholerae genome was undertaken with MUMmer.nnnFINDINGSnThe genome consisted of two circular chromosomes of 3288558 bp and 1877212 bp; it contained 4832 genes. Comparison of the V parahaemolyticus genome with that of V cholerae showed many rearrangements within and between the two chromosomes. Genes for the type III secretion system (TTSS) were identified in the genome of V parahaemolyticus; V cholerae does not have these genes.nnnINTERPRETATIONnThe TTSS is a central virulence factor of diarrhoea-causing bacteria such as shigella, salmonella, and enteropathogenic Escherichia coli, which cause gastroenteritis by invading or intimately interacting with intestinal epithelial cells. Our results suggest that V parahaemolyticus and V cholerae use distinct mechanisms to establish infection. This finding explains clinical features of V parahaemolyticus infections, which commonly include inflammatory diarrhoea and in some cases systemic manifestations such as septicaemia, distinct from those of V cholerae infections, which are generally associated with non-inflammatory diarrhoea.


PLOS ONE | 2009

Direct Metagenomic Detection of Viral Pathogens in Nasal and Fecal Specimens Using an Unbiased High-Throughput Sequencing Approach

Shota Nakamura; Cheng-Song Yang; Naomi Sakon; Mayo Ueda; Takahiro Tougan; Akifumi Yamashita; Naohisa Goto; Kazuo Takahashi; Teruo Yasunaga; Kazuyoshi Ikuta; Tetsuya Mizutani; Yoshiko Okamoto; Michihira Tagami; Ryoji Morita; Norihiro Maeda; Jun Kawai; Yoshihide Hayashizaki; Yoshiyuki Nagai; Toshihiro Horii; Tetsuya Iida; Takaaki Nakaya

With the severe acute respiratory syndrome epidemic of 2003 and renewed attention on avian influenza viral pandemics, new surveillance systems are needed for the earlier detection of emerging infectious diseases. We applied a “next-generation” parallel sequencing platform for viral detection in nasopharyngeal and fecal samples collected during seasonal influenza virus (Flu) infections and norovirus outbreaks from 2005 to 2007 in Osaka, Japan. Random RT-PCR was performed to amplify RNA extracted from 0.1–0.25 ml of nasopharyngeal aspirates (Nu200a=u200a3) and fecal specimens (Nu200a=u200a5), and more than 10 µg of cDNA was synthesized. Unbiased high-throughput sequencing of these 8 samples yielded 15,298–32,335 (average 24,738) reads in a single 7.5 h run. In nasopharyngeal samples, although whole genome analysis was not available because the majority (>90%) of reads were host genome–derived, 20–460 Flu-reads were detected, which was sufficient for subtype identification. In fecal samples, bacteria and host cells were removed by centrifugation, resulting in gain of 484–15,260 reads of norovirus sequence (78–98% of the whole genome was covered), except for one specimen that was under-detectable by RT-PCR. These results suggest that our unbiased high-throughput sequencing approach is useful for directly detecting pathogenic viruses without advance genetic information. Although its cost and technological availability make it unlikely that this system will very soon be the diagnostic standard worldwide, this system could be useful for the earlier discovery of novel emerging viruses and bioterrorism, which are difficult to detect with conventional procedures.


BMC Evolutionary Biology | 2009

Genomic taxonomy of vibrios

Cristiane C. Thompson; Ana Carolina Paulo Vicente; Rangel Celso Souza; Ana Tereza Ribeiro de Vasconcelos; Tammi Camilla Vesth; Nelson Alves; David W. Ussery; Tetsuya Iida; Fabiano L. Thompson

BackgroundVibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios.ResultsWe have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree.ConclusionThe combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding.


Scientific Reports | 2015

Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota

Kei Arimatsu; Hitomi Yamada; Haruna Miyazawa; Takayoshi Minagawa; Mayuka Nakajima; Mark I. Ryder; Kazuyoshi Gotoh; Daisuke Motooka; Shota Nakamura; Tetsuya Iida; Kazuhisa Yamazaki

Periodontitis has been implicated as a risk factor for metabolic disorders such as type 2 diabetes, atherosclerotic vascular diseases, and non-alcoholic fatty liver disease. Although bacteremias from dental plaque and/or elevated circulating inflammatory cytokines emanating from the inflamed gingiva are suspected mechanisms linking periodontitis and these diseases, direct evidence is lacking. We hypothesize that disturbances of the gut microbiota by swallowed bacteria induce a metabolic endotoxemia leading metabolic disorders. To investigate this hypothesis, changes in the gut microbiota, insulin and glucose intolerance, and levels of tissue inflammation were analysed in mice after oral administration of Porphyromonas gingivalis, a representative periodontopathogens. Pyrosequencing revealed that the population belonging to Bacteroidales was significantly elevated in P. gingivalis-administered mice which coincided with increases in insulin resistance and systemic inflammation. In P. gingivalis-administered mice blood endotoxin levels tended to be higher, whereas gene expression of tight junction proteins in the ileum was significantly decreased. These results provide a new paradigm for the interrelationship between periodontitis and systemic diseases.


Emerging Infectious Diseases | 2008

Metagenomic Diagnosis of Bacterial Infections

Shota Nakamura; Norihiro Maeda; Ionut Mihai Miron; Myonsun Yoh; Kaori Izutsu; Chidoh Kataoka; Takeshi Honda; Teruo Yasunaga; Takaaki Nakaya; Jun Kawai; Yoshihide Hayashizaki; Toshihiro Horii; Tetsuya Iida

To test the ability of high-throughput DNA sequencing to detect bacterial pathogens, we used it on DNA from a patient’s feces during and after diarrheal illness. Sequences showing best matches for Campylobacter jejuni were detected only in the illness sample. Various bacteria may be detectable with this metagenomic approach.


Cell Host & Microbe | 2011

VopV, an F-Actin-Binding Type III Secretion Effector, Is Required for Vibrio parahaemolyticus-Induced Enterotoxicity

Hirotaka Hiyoshi; Toshio Kodama; Kazunobu Saito; Kazuyoshi Gotoh; Shigeaki Matsuda; Yukihiro Akeda; Takeshi Honda; Tetsuya Iida

Vibrio parahaemolyticus, a Gram-negative halophilic bacterium that causes acute gastroenteritis in humans, is characterized by two type III secretion systems (T3SS), namely T3SS1 and T3SS2. T3SS2 is indispensable for enterotoxicity but the effector(s) involved are unknown. Here, we identify VopV as a critical effector that is required to mediate V. parahaemolyticus T3SS2-dependent enterotoxicity. VopV was found to possess multiple F-actin-binding domains and the enterotoxicity caused by VopV correlated with its F-actin-binding activity. Furthermore, a T3SS2-related secretion system and a vopV homologous gene were also involved in the enterotoxicity of a non-O1/non-O139 V. cholerae strain. These results indicate that the F-actin-targeting effector VopV is involved in enterotoxic activity of T3SS2-possessing bacterial pathogens.


IEEE Transactions on Electron Devices | 2012

A 33-Megapixel 120-Frames-Per-Second 2.5-Watt CMOS Image Sensor With Column-Parallel Two-Stage Cyclic Analog-to-Digital Converters

Kazuya Kitamura; Toshihisa Watabe; Takehide Sawamoto; Tomohiko Kosugi; Tomoyuki Akahori; Tetsuya Iida; Keigo Isobe; Takashi Watanabe; Hiroshi Shimamoto; Hiroshi Ohtake; Satoshi Aoyama; Shoji Kawahito; Norifumi Egami

A 33-megapixel 120-frames/s (fps) CMOS image sensor has been developed. The 7808 × 4336 pixel 2.8-μm pixel pitch CMOS image sensor with 12-bit, column-parallel, two-stage, cyclic analog-to-digital converters (ADCs) and 96 parallel low-voltage differential signaling output ports operates at a data rate of 51.2 Gb/s. The pipelined operation of the two cyclic ADCs reduces the conversion time. This ADC architecture also effectively lowers the power consumption by exploiting the amplifier function of the cyclic ADC. The CMOS image sensor implemented with 0.18-μm technology exhibits a sensitivity of 0.76 V/lx·s without a microlens and a random noise of 5.1 erms- with no column amplifier gain and 3.0erms- with a gain of 7.5 at 120 fps while dissipating only 2.45 and 2.67 W, respectively.


BMC Genomics | 2014

Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes.

Mari Miyamoto; Daisuke Motooka; Kazuyoshi Gotoh; Takamasa Imai; Kazutoshi Yoshitake; Naohisa Goto; Tetsuya Iida; Teruo Yasunaga; Toshihiro Horii; Kazuharu Arakawa; Masahiro Kasahara; Shota Nakamura

BackgroundThe availability of diverse second- and third-generation sequencing technologies enables the rapid determination of the sequences of bacterial genomes. However, identifying the sequencing technology most suitable for producing a finished genome with multiple chromosomes remains a challenge. We evaluated the abilities of the following three second-generation sequencers: Roche 454 GS Junior (GS Jr), Life Technologies Ion PGM (Ion PGM), and Illumina MiSeq (MiSeq) and a third-generation sequencer, the Pacific Biosciences RS sequencer (PacBio), by sequencing and assembling the genome of Vibrio parahaemolyticus, which consists of a 5-Mb genome comprising two circular chromosomes.ResultsWe sequenced the genome of V. parahaemolyticus with GS Jr, Ion PGM, MiSeq, and PacBio and performed de novo assembly with several genome assemblers. Although GS Jr generated the longest mean read length of 418xa0bp among the second-generation sequencers, the maximum contig length of the best assembly from GS Jr was 165 kbp, and the number of contigs was 309. Single runs of Ion PGM and MiSeq produced data of considerably greater sequencing coverage, 279× and 1,927×, respectively. The optimized result for Ion PGM contained 61 contigs assembled from reads of 77× coverage, and the longest contig was 895 kbp in size. Those for MiSeq were 34 contigs, 58×u2009coverage, and 733 kbp, respectively. These results suggest that higher coverage depth is unnecessary for a better assembly result. We observed that multiple rRNA coding regions were fragmented in the assemblies from the second-generation sequencers, whereas PacBio generated two exceptionally long contigs of 3,288,561 and 1,875,537xa0bps, each of which was from a single chromosome, with 73× coverage and mean read length 3,119xa0bp, allowing us to determine the absolute positions of all rRNA operons.ConclusionsPacBio outperformed the other sequencers in terms of the length of contigs and reconstructed the greatest portion of the genome, achieving a genome assembly of “finished grade” because of its long reads. It showed the potential to assemble more complex genomes with multiple chromosomes containing more repetitive sequences.


Nature Communications | 2014

Generation of colonic IgA-secreting cells in the caecal patch

Kazunori Masahata; Eiji Umemoto; Hisako Kayama; Manato Kotani; Shota Nakamura; Takashi Kurakawa; Junichi Kikuta; Kazuyoshi Gotoh; Daisuke Motooka; Shintaro Sato; Tomonori Higuchi; Yoshihiro Baba; Tomohiro Kurosaki; Makoto Kinoshita; Yosuke Shimada; Taishi Kimura; Ryu Okumura; Akira Takeda; Masaru Tajima; Osamu Yoshie; Masahiro Fukuzawa; Hiroshi Kiyono; Sidonia Fagarasan; Tetsuya Iida; Masaru Ishii; Kiyoshi Takeda

Gut-associated lymphoid tissues are responsible for the generation of IgA-secreting cells. However, the function of the caecal patch, a lymphoid tissue in the appendix, remains unknown. Here we analyse the role of the caecal patch using germ-free mice colonized with intestinal bacteria after appendectomy. Appendectomized mice show delayed accumulation of IgA(+) cells in the large intestine, but not the small intestine, after colonization. Decreased colonic IgA(+) cells correlate with altered faecal microbiota composition. Experiments using photoconvertible Kaede-expressing mice or adoptive transfer show that the caecal patch IgA(+) cells migrate to the large and small intestines, whereas Peyers patch cells are preferentially recruited to the small intestine. IgA(+) cells in the caecal patch express higher levels of CCR10. Dendritic cells in the caecal patch, but not Peyers patches, induce CCR10 on cocultured B cells. Thus, the caecal patch is a major site for generation of IgA-secreting cells that migrate to the large intestine.


PLOS Pathogens | 2012

A Cytotoxic Type III Secretion Effector of Vibrio parahaemolyticus Targets Vacuolar H+-ATPase Subunit c and Ruptures Host Cell Lysosomes

Shigeaki Matsuda; Natsumi Okada; Toshio Kodama; Takeshi Honda; Tetsuya Iida

Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent cytotoxicity is unknown. Here, we found that protein transfection of VepA into HeLa cells resulted in cell death, indicating that VepA alone is cytotoxic. The ectopic expression of VepA in yeast Saccharomyces cerevisiae interferes with yeast growth, indicating that VepA is also toxic in yeast. A yeast genome-wide screen identified the yeast gene VMA3 as essential for the growth inhibition of yeast by VepA. Although VMA3 encodes subunit c of the vacuolar H+-ATPase (V-ATPase), the toxicity of VepA was independent of the function of V-ATPases. In HeLa cells, knockdown of V-ATPase subunit c decreased VepA-mediated cytotoxicity. We also demonstrated that VepA interacted with V-ATPase subunit c, whereas a carboxyl-terminally truncated mutant of VepA (VepAΔC), which does not show toxicity, did not. During infection, lysosomal contents leaked into the cytosol, revealing that lysosomal membrane permeabilization occurred prior to cell lysis. In a cell-free system, VepA was sufficient to induce the release of cathepsin D from isolated lysosomes. Therefore, our data suggest that the bacterial effector VepA targets subunit c of V-ATPase and induces the rupture of host cell lysosomes and subsequent cell death.

Collaboration


Dive into the Tetsuya Iida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge