Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Yoneda is active.

Publication


Featured researches published by Tetsuya Yoneda.


American Journal of Neuroradiology | 2016

Lateral Asymmetry and Spatial Difference of Iron Deposition in the Substantia Nigra of Patients with Parkinson Disease Measured with Quantitative Susceptibility Mapping

Minako Azuma; Toshinori Hirai; Kazumichi Yamada; S. Yamashita; Yukio Ando; Machiko Tateishi; Yasuhiko Iryo; Tetsuya Yoneda; Mika Kitajima; Yi Wang; Yo Ichi Yamashita

The authors evaluated 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls who underwent 3T MR imaging with a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility maps they measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both cerebral hemispheres. Susceptibility in the middle part, the posterior part, and the whole substantia nigra was significantly higher in the more and the less affected hemibrains of patients with Parkinson disease than in the healthy controls. Also, susceptibility was significantly higher in the posterior substantia nigra of the more affected hemibrain. BACKGROUND AND PURPOSE: Quantitative susceptibility mapping is useful for assessing iron deposition in the substantia nigra of patients with Parkinson disease. We aimed to determine whether quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference in iron deposits in the substantia nigra of patients with Parkinson disease. MATERIALS AND METHODS: Our study population comprised 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls. They underwent 3T MR imaging by using a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility mapping, we measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both hemibrains. To identify the more and less affected hemibrains in patients with Parkinson disease, we assessed the severity of movement symptoms for each hemibrain by using the Unified Parkinsons Disease Rating Scale. RESULTS: In the posterior substantia nigra of patients with Parkinson disease, the mean susceptibility value was significantly higher in the more than the less affected hemibrain substantia nigra (P < .05). This value was significantly higher in both the more and less affected hemibrains of patients with Parkinson disease than in controls (P < .05). Asymmetry of the mean susceptibility values was significantly greater for patients than controls (P < .05). Receiver operating characteristic analysis showed that quantitative susceptibility mapping of the posterior substantia nigra in the more affected hemibrain provided the highest power for discriminating patients with Parkinson disease from the controls. CONCLUSIONS: Quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease.


European Radiology | 2011

A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy

Shingo Kakeda; Yukunori Korogi; Tetsuya Yoneda; Johji Nishimura; Toru Sato; Yasuhiro Hiai; Norihiro Ohnari; Kazumasa Okada; Haruki Hayashi; Eiji Matsusue; Takenori Uozumi; Sadatoshi Tsuji

ObjectivesTo develop a new tract imaging technique for visualising small fibre tracts of the brainstem and for detecting the abnormalities in multiple system atrophy of the cerebellar type (MSA-C) using a phase difference enhanced (PADRE) imaging technique, in which the phase difference between the target and surrounding tissue is selectively enhanced.MethodsTwo neuroradiologists compared the high-spatial-resolution PADRE imaging, which was acquired from six healthy volunteers, three patients with MSA-C, and 7 patients with other types of neurodegenerative diseases involving the brainstem or cerebellum.ResultsVarious fine fibre tracts in the brainstem, the superior and inferior cerebellar peduncles, medial lemniscus, spinothalamic tract, medial longitudinal fasciculus, central tegmental tract, corticospinal tract and transverse pontine fibres, were identified on PADRE imaging. PADRE imaging from MSA-C demonstrated the disappearance of transverse pontine fibres and significant atrophy of the inferior cerebellar peduncles, while the superior cerebellar peduncles were intact. PADRE imaging also demonstrated that the transverse pontine fibres and inferior cerebellar peduncle were not involved in the other neurodegenerative diseases.ConclusionPADRE imaging can offer a new form of tract imaging of the brainstem and may have the potential to reinforce the clinical utility of MRI in differentiating MSA from other conditions.


Academic Radiology | 2012

Delineation of Optic Radiation and Stria of Gennari on High-resolution Phase Difference Enhanced Imaging

Satoru Ide; Shingo Kakeda; Yukunori Korogi; Tetsuya Yoneda; Johji Nishimura; Toru Sato; Yasuhiro Hiai; Norihiro Ohnari; Masanori Takahashi; Kenji Hachisuka; Hitoshi Fujiwara; Atsuji Matsuyama

RATIONALE AND OBJECTIVES Phase difference enhanced (PADRE) imaging technique can selectively enhanced the phase difference between the target and surrounding tissue. Our purpose is to assess the delineations of the optic radiation and primary visual cortex (stria of Gennari) using PADRE. MATERIALS AND METHODS The subjects were 6 healthy volunteers. Axial and coronal high-spatial resolution PADRE images were acquired covering the entire optic radiation using a 3T magnetic resonance system. Two radiologists evaluated the PADRE and susceptibility-weighted imaging (SWI)-like images for the delineation of four layers at the optic radiation (tapetum, internal sagittal stratum, external sagittal stratum, and adjacent white matter) on the basis of the anatomic appearances of the cadaveric specimens stained with Bodians method and Kluver-Barrera method. The radiologists also assessed the delineations of the stria of Gennari on PADRE and SWI-like images. RESULTS In all 6 healthy subjects, the PADRE images clearly identified the four layers at the optic radiation, as well as the stria of Gennari, which were difficult to appreciate in SWI-like images. The anatomic appearances of the optic radiation on PADRE images were more similar to those seen in the specimens stained with Kluver-Barrera method than with Bodians method. CONCLUSION The PADRE technique can delineate the four layers at the optic radiation and the stria of Gennari; the differences in myelin densities can also be enhanced. The PADRE technique may have the potential to reinforce the clinical utility of MRI in the diagnosis of diseases that affect the optic radiation and primary visual cortex.


NeuroImage: Clinical | 2013

Osmotic release oral system-methylphenidate improves neural activity during low reward processing in children and adolescents with attention-deficit/hyperactivity disorder.

Kei Mizuno; Tetsuya Yoneda; Masanori Komi; Toshinori Hirai; Yasuyoshi Watanabe; Akemi Tomoda

Attention-deficit/hyperactivity disorder (ADHD) is neurobehavioral disorder characterized by inattention, hyperactivity/impulsivity and impaired reward system function, such as delay aversion and low reward sensitivity. The pharmacological treatment for ADHD includes methylphenidate (MPH), or osmotic release oral system-MPH (OROS-MPH), which increases extrasynaptic dopamine and noradrenaline levels by blocking their reuptake. Although previous functional magnetic resonance imaging (fMRI) studies revealed that acute treatment with MPH alters activation of the nucleus accumbens during delay aversion in children and adolescents with ADHD, the effects a relatively long period of OROS-MPH treatment on delay aversion as well as reward sensitivity remain unclear. Thus, we evaluated brain activation with fMRI during a reward sensitivity paradigm that consists of high monetary reward and low monetary reward conditions before and after a 3-month treatment with OROS-MPH in 17 children and adolescents with ADHD (mean age, 13.3 ± 2.2) and 17 age- and sex-matched healthy controls (mean age, 13.0 ± 1.9). We found that before treatment there was decreased activation of the nucleus accumbens and thalamus in patients with ADHD during only the low monetary reward condition, which was improved to same level as those of the healthy controls after the treatment. The observed change in brain activity was associated with improved ADHD symptom scores, which were derived from Japanese versions of the ADHD rating scale-IV. These results suggest that treatment with OROS-MPH for a relatively long period is effective in controlling reward sensitivity in children and adolescents with ADHD.


NeuroImage: Clinical | 2016

Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome

Kei Mizuno; Junko Kawatani; Kanako Tajima; Akihiro T. Sasaki; Tetsuya Yoneda; Masanori Komi; Toshinori Hirai; Akemi Tomoda; Takako Joudoi; Yasuyoshi Watanabe

Motivational signals influence a wide variety of cognitive processes and components of behavioral performance. Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS) may be closely associated with a low motivation to learn induced by impaired neural reward processing. However, the extent to which reward processing is impaired in CCFS patients is unclear. The aim of the present functional magnetic resonance imaging (fMRI) study was to determine whether brain activity in regions related to reward sensitivity is impaired in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years) and 13 healthy children and adolescents (HCA) (mean age, 13.7 ± 1.3 years) performing a monetary reward task. Neural activity in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue and the reward obtained from learning in daily life were evaluated by questionnaires. Activity of the putamen was lower in the CCFS group than in the HCA group in the low-reward condition, but not in the high-reward condition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively correlated with severity of fatigue and the reward from learning in daily life, respectively. We previously revealed that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen. This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function, decreases reward sensitivity and lowers motivation to learn.


European Radiology | 2016

Zebra sign of precentral gyri in amyotrophic lateral sclerosis: A novel finding using phase difference enhanced (PADRE) imaging-initial results

Shingo Kakeda; Tetsuya Yoneda; Satoru Ide; Mari Miyata; Tomoyo Hashimoto; Koichiro Futatsuya; Keita Watanabe; Atsushi Ogasawara; Junji Moriya; Toru Sato; Kazumasa Okada; Takenori Uozumi; Hiroaki Adachi; Yukunori Korogi

AbstractObjectiveWe compared the precentral gyri (PG) on the PADRE of patients with amyotrophic lateral sclerosis (ALS) and healthy subjects (HSs) in order to determine whether it is possible to discriminate between ALS patients and HSs on an individual basis.MethodsFirst, two radiologists reviewed the appearance of the normal PG and that of ALS patients on PADRE in a non-blinded manner, and deviations from the appearance of the normal PG were recorded. Next, based on the presence of PG abnormalities on PADRE, we performed an observer performance study using 16 ALS patients and 16 HSs.ResultsThe radiologists were able to consensually define the PG as abnormal on PADRE when a low-signal-intensity layer was observed in the gray matter of the PG; a three- or four-layer organization (zebra sign) was characterized by the low-signal-intensity layer. The observer performance study demonstrated that the sensitivity, specificity, and accuracy of PG abnormalities on PADRE for discriminating ALS patients from HSs were 94 %, 94 %, and 94 %, respectively, for reviewers 1 and 2.ConclusionsIt was possible to discriminate between ALS patients and HSs based on the presence of PG abnormalities on PADRE, which may reflect upper motor neuron impairment in ALS.Key Points• PADRE reveals low-signal-intensity layer in the PG of ALS • By PADRE findings on PG, we can discriminate ALS from HSs • PADRE may be a useful method for detecting UMN impairment in ALS


Magnetic Resonance in Medical Sciences | 2016

Juxtacortical lesions in multiple sclerosis: Assessment of gray matter involvement using phase difference-enhanced imaging (PADRE)

Koichiro Futatsuya; Shingo Kakeda; Tetsuya Yoneda; Issei Ueda; Keita Watanabe; Junji Moriya; Yu Murakami; Satoru Ide; Atsushi Ogasawara; Norihiro Ohnari; Kazumasa Okada; Hiroaki Adachi; Yukunori Korogi

Purpose: In multiple sclerosis (MS), a juxtacortical lesion at the border between the gray matter (GM) and subcortical white matter (WM) may often involve the GM. A recently developed, phase-weighted magnetic resonance imaging (MRI) technique “phase difference enhanced imaging (PADRE)” can delineate the GM and WM clearly due to the difference in myelin concentration. We evaluated whether PADRE is useful for the detection of GM involvement in the juxtacortical MS lesions. Methods: One neuroradiologist reviewed the conventional MRI in 13 MS patients and selected 48 juxtacortical lesions. At the first reading session with the conventional MRI alone (T2-weighted imaging, and two-dimensional and three-dimensional fluid-attenuated inversion recovery), two other neuroradiologists classified the lesions into three patterns according to their anatomical locations: (a) subcortical WM lesions involving the subcortical WM alone; (b) intracortical (IC) lesions involving the GM alone; (c) mixed GM/subcortical WM (mixed) lesions involving the both subcortical WM and GM. We defined the subcortical WM as a WM within a distance of 10 mm from inner edge of the GM. For the analyses, we excluded the white matter lesions further than 10 mm from inner edge of the GM. At the second reading session MRI and PADRE were available and the radiologists re-evaluated their prior classification. Results: At the first reading session, 27 lesions were classified as (a), 1 as (b), and 20 as (c). Therefore, a total of 21 lesions (44%) were judged to involve the GM. At the second reading session, the classification of 15 (31%) lesions changed; all 15 lesions were judged to involve the GM on the PADRE. Interobserver agreement (kappa value) was 0.84 for the first- and 0.95 for the second reading session. Conclusion: PADRE is useful for detecting GM involvement of the juxtacortical MS lesions.


American Journal of Neuroradiology | 2015

Visualization of the Medial and Lateral Geniculate Nucleus on Phase Difference Enhanced Imaging

Mika Kitajima; Toshinori Hirai; Tetsuya Yoneda; Yasuhiko Iryo; Minako Azuma; Machiko Tateishi; Kosuke Morita; Masanori Komi; Yo Ichi Yamashita

BACKGROUND AND PURPOSE: The precise identification and measurement of the medial geniculate nucleus and lateral geniculate nucleus on MR imaging remain technically challenging because the thalamic nuclei are small structures. We compared the visualization of the medial geniculate nucleus and lateral geniculate nucleus on phase difference enhanced imaging with 3D high-resolution phase imaging, 2D-T2WI, STIR, proton attenuation–weighted imaging, and DTI acquired at 3T. We also measured the volume and height of the medial geniculate nucleus and lateral geniculate nucleus on phase difference enhanced imaging. MATERIALS AND METHODS: Phase difference enhanced, 2D-T2-weighted, STIR, proton attenuation–weighted, and DTI were acquired on a 3T MR imaging unit in 10 healthy volunteers. Two neuroradiologists recorded the qualitative visualization scores of the medial geniculate nucleus and lateral geniculate nucleus, specifically the identification of their boundaries, for all images. Measurement differences were assessed with the Wilcoxon signed rank test. The volume and height of the medial geniculate nucleus and lateral geniculate nucleus were measured on phase difference enhanced imaging and compared with previously reported values. RESULTS: The qualitative visualization scores of the lateral geniculate nucleus and medial geniculate nucleus were significantly higher on phase difference enhanced images than on T2-weighted, proton attenuation–weighted, STIR, or DTI (P < .05). On phase difference enhanced imaging, the medial geniculate nucleus and lateral geniculate nucleus were bordered by low-intensity structures: the cerebral peduncle, the origin of the optic radiation, and the superior and inferior quadrigeminal brachia. The volume of the medial geniculate nucleus and lateral geniculate nucleus varied from 74.0 to 183.75 mm3 (mean, 129.0 ± 34.7 mm3) and from 96.5 to 173.75 mm3 (mean, 135.2 ± 28.0 mm3), respectively. CONCLUSIONS: For the depiction of the medial geniculate nucleus and lateral geniculate nucleus on 3T MR imaging, phase difference enhanced imaging is superior to conventional MR imaging. The medial geniculate nucleus and lateral geniculate nucleus volumes vary among individuals.


Magnetic Resonance in Medical Sciences | 2017

Internal Structures of the Globus Pallidus in Patients with Parkinson's Disease: Evaluation with Phase Difference-enhanced Imaging.

Satoru Ide; Shingo Kakeda; Tetsuya Yoneda; Junji Moriya; Keita Watanabe; Atsushi Ogasawara; Koichiro Futatsuya; Norihiro Ohnari; Toru Sato; Yasuhiro Hiai; Atsuji Matsuyama; Hitoshi Fujiwara; Masanori Hisaoka; Yukunori Korogi

Purpose: The medial medullary lamina (MML) separates the medial globus pallidus (GPm) from the lateral. The aim of this study was to assess the changes in appearance of MML related to age using the phase difference-enhanced (PADRE) imaging and to determine whether PADRE can depict the MML in the patients with Parkinson’s disease (PD). Materials and Methods: We enrolled 20 patients with PD and 50 normal control subjects (NC). First, for the visualization of the MML in the NC, we compared the PADRE, susceptibility-weighted imaging (SWI)-like images and T2weighted imaging (WI) by using multiple comparison. The grading methods are as follows: grade 1; MML was not delineated, grade 2; less than half of MML was delineated, grade 3; more than half of MML was delineated and grade 4; whole MML was clearly delineated. We determined grade 3 and 4 as good depiction, delineating the GPm. Then, we evaluated patients with PD using the same method. Results: In NC, the delineation of MML was good in 84% of cases on PADRE, but only 34% of cases showed a good depiction on SWI-like images (average grading score 3.31 vs 2.11, P < 0.05). No MML was delineated in all cases on T2WI. Although younger subjects tended to show whole MML clearly, a part of MML tends to be obscured with age on PADRE. In patients with PD the depiction of MML on PADRE was also good in 90% of cases. Conclusion: The PADRE technique facilitates the depiction of the MML within globus pallidus (GP) on a broad range of age NC and patients with PD and it is superior to SWI-like images and T2WI.


Acta Radiologica | 2016

Signal intensity of superficial white matter on phase difference enhanced imaging as a landmark of the perirolandic cortex.

Shingo Kakeda; Tetsuya Yoneda; Satoru Ide; Keita Watanabe; Yasuhiro Hiai; Yukunori Korogi

Background The superficial white matter (SWM), which fills the space between the deep white matter and the cortex, has not been well characterized. Purpose To determine whether the assessment of the relative signal intensity (SI) of the SWM in the precentral and postcentral gyri on phase difference enhanced (PADRE) images contributes in establishing anatomical landmark. Material and Methods The study population consisted of 43 normal subjects (28 women, 15 men; mean age, 52.9 years; age range, 22–90 years). By the consensus of two observers, the precentral gyri, postcentral gyri, and superior frontal cortex (SFC) were identified based on the established anatomical methods. The SI of the SWM in the precentral and postcentral gyri on PADRE images was divided into three grades in comparison with that of the SFC: Grade I, isointense; Grade II, slightly hypointense; and Grade III, markedly hypointense. Results The SWM in the precentral and postcentral gyri showed hypointensity on PADRE images. In the SI analyses of the PADRE images, the Grade I, Grade II, and Grade III appearances were found in one (1%), 20 (23%), and 65 (76%) of the 86 precentral gyri (43 subjects), respectively, and in one (1%), 23 (27%), and 62 (72%) of the 86 postcentral gyri, respectively. Conclusion On PADRE images, the perirolandic SWM showed hypointensity compared to other cerebral cortices, which probably reflects differences in the concentrations of the nerve fibers, as well as the higher myelin content. PADRE may be useful for the identification of the central sulcus by assessing the SI of the SWM.

Collaboration


Dive into the Tetsuya Yoneda's collaboration.

Top Co-Authors

Avatar

Shingo Kakeda

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar

Yukunori Korogi

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar

Satoru Ide

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazumasa Okada

University of Occupational and Environmental Health Japan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge