Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thabata M. Alvarez is active.

Publication


Featured researches published by Thabata M. Alvarez.


Bioresource Technology | 2012

Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides

Thiago A. Gonçalves; André R.L. Damásio; Fernando Segato; Thabata M. Alvarez; J. Bragatto; Lívia B. Brenelli; A.P.S. Citadini; Mario Tyago Murakami; Roberto Ruller; A.F. Paes Leme; Rolf A. Prade; Fabio M. Squina

Plant cell wall degrading enzymes are key technological components in biomass bioconversion platforms for lignocellulosic materials transformation. Cost effective production of enzymes and identification of efficient degradation routes are two economic bottlenecks that currently limit the use of renewable feedstocks through an environmental friendly pathway. The present study describes the hypersecretion of an endo-xylanase (GH11) and an arabinofuranosidase (GH54) by a fungal expression system with potential biotechnological application, along with comprehensive characterization of both enzymes, including spectrometric analysis of thermal denaturation, biochemical characterization and mode of action description. The synergistic effect of these enzymes on natural substrates such as sugarcane bagasse, demonstrated the biotechnological potential of using GH11 and GH54 for production of probiotic xylooligosaccharides from plant biomass. Our findings shed light on enzymatic mechanisms for xylooligosaccharide production, as well as provide basis for further studies for the development of novel enzymatic routes for use in biomass-to-bioethanol applications.


PLOS ONE | 2012

The Penicillium echinulatum Secretome on Sugar Cane Bagasse

Daniela Ribeiro; Junio Cota; Thabata M. Alvarez; Fernanda Brüchli; Juliano Bragato; Beatriz Merchel Piovesan Pereira; Bianca Alves Pauletti; George R. Jackson; Maria Teresa Borges Pimenta; Mario Tyago Murakami; Marli Camassola; Roberto Ruller; Aldo José Pinheiro Dillon; José Geraldo da Cruz Pradella; Adriana Franco Paes Leme; Fabio M. Squina

Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.


Biochemical and Biophysical Research Communications | 2011

Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila

Junio Cota; Thabata M. Alvarez; Ana Paula Citadini; Camila R. Santos; Mario de Oliveira Neto; Renata Rocha de Oliveira; Glaucia Maria Pastore; Roberto Ruller; Rolf A. Prade; Mario Tyago Murakami; Fabio M. Squina

1,3-β-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal β-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90°C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules.


Journal of Structural Biology | 2012

Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase.

Camila R. Santos; Joice Helena Paiva; Andreia Navarro Meza; Junio Cota; Thabata M. Alvarez; Roberto Ruller; Rolf A. Prade; Fabio M. Squina; Mario Tyago Murakami

The breakdown of β-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of β-mannanases. In this work, a two-domain β-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/β)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.


Biotechnology for Biofuels | 2011

Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

João Paulo L. Franco Cairo; Flávia Costa Leonardo; Thabata M. Alvarez; Daniela A. Ribeiro; Fernanda Büchli; Marcelo Falsarella Carazzolle; Fernando Ferreira Costa; Adriana Franco Paes Leme; Gonçalo Ag Pereira; Fabio M. Squina

BackgroundLignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production.ResultsThe study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termites digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis.ConclusionsHere we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29).


PLOS ONE | 2013

Structure and function of a novel cellulase 5 from sugarcane soil metagenome.

Thabata M. Alvarez; Joice Helena Paiva; Diego M. Ruiz; João Paulo L. Franco Cairo; Isabela O. Pereira; Douglas A. A. Paixão; Rodrigo F. de Almeida; Celisa C. C. Tonoli; Roberto Ruller; Camila R. Santos; Fabio M. Squina; Mario Tyago Murakami

Cellulases play a key role in enzymatic routes for degradation of plant cell-wall polysaccharides into simple and economically-relevant sugars. However, their low performance on complex substrates and reduced stability under industrial conditions remain the main obstacle for the large-scale production of cellulose-derived products and biofuels. Thus, in this study a novel cellulase with unusual catalytic properties from sugarcane soil metagenome (CelE1) was isolated and characterized. The polypeptide deduced from the celE1 gene encodes a unique glycoside hydrolase domain belonging to GH5 family. The recombinant enzyme was active on both carboxymethyl cellulose and β-glucan with an endo-acting mode according to capillary electrophoretic analysis of cleavage products. CelE1 showed optimum hydrolytic activity at pH 7.0 and 50 °C with remarkable activity at alkaline conditions that is attractive for industrial applications in which conventional acidic cellulases are not suitable. Moreover, its three-dimensional structure was determined at 1.8 Å resolution that allowed the identification of an insertion of eight residues in the β8-α8 loop of the catalytic domain of CelE1, which is not conserved in its psychrophilic orthologs. This 8-residue-long segment is a prominent and distinguishing feature of thermotolerant cellulases 5 suggesting that it might be involved with thermal stability. Based on its unconventional characteristics, CelE1 could be potentially employed in biotechnological processes that require thermotolerant and alkaline cellulases.


Biochemical and Biophysical Research Communications | 2010

Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

Camila R. Santos; Andreia Navarro Meza; Zaira B. Hoffmam; Junio Cota Silva; Thabata M. Alvarez; Roberto Ruller; Guilherme Menegon Giesel; Hugo Verli; Fabio M. Squina; Rolf A. Prade; Mario Tyago Murakami

Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20°C, and exclusively xylobiose at 90°C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.


Biochimica et Biophysica Acta | 2013

Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations

Junio Cota; Leandro C. Oliveira; André R.L. Damásio; Ana Paula Citadini; Zaira B. Hoffmam; Thabata M. Alvarez; Carla A. Codima; Vitor Barbanti Pereira Leite; Glaucia Maria Pastore; Mario Oliveira-Neto; Mario Tyago Murakami; Roberto Ruller; Fabio M. Squina

Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (kcat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes.


Insect Biochemistry and Molecular Biology | 2013

Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi

João Paulo L. Franco Cairo; Leandro C. Oliveira; Cristiane Akemi Uchima; Thabata M. Alvarez; Ana Paula Citadini; Junio Cota; Flávia Costa Leonardo; Marcelo Falsarella Carazzolle; Fernando Ferreira Costa; Gonçalo Amarante Guimarães Pereira; Fabio M. Squina

Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications.


Frontiers in Microbiology | 2016

Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi

João Paulo L. Franco Cairo; Marcelo Falsarella Carazzolle; Flávia Costa Leonardo; Luciana Souto Mofatto; Lívia B. Brenelli; Thiago A. Gonçalves; Cristiane Akemi Uchima; Romênia R. Domingues; Thabata M. Alvarez; Robson Tramontina; Ramon Vidal; Fernando Ferreira Costa; Adriana Franco Paes Leme; Gonçalo Amarante Guimarães Pereira; Fabio M. Squina

Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

Collaboration


Dive into the Thabata M. Alvarez's collaboration.

Top Co-Authors

Avatar

Fabio M. Squina

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Ruller

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camila R. Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junio Cota

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge