Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thach-Vu Ho is active.

Publication


Featured researches published by Thach-Vu Ho.


Development | 2013

Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice

Junichi Iwata; Akiko Suzuki; Richard Pelikan; Thach-Vu Ho; Pedro A. Sanchez-Lara; Mark M. Urata; Michael J. Dixon; Yang Chai

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4fl/fl;K14-Cre;Irf6+/R84C) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2fl/fl;K14-Cre mice, although the secondary palate of Irf6+/R84C and Smad4fl/fl;K14-Cre mice form normally. Furthermore, Smad4fl/fl;K14-Cre;Irf6+/R84C mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2fl/fl;K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice.


Developmental Cell | 2015

BMP-SHH Signaling Network Controls Epithelial Stem Cell Fate via Regulation of Its Niche in the Developing Tooth

Jingyuan Li; Jifan Feng; Yang Liu; Thach-Vu Ho; Weston Grimes; Hoang Anh Ho; Shery Park; Songlin Wang; Yang Chai

During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.


Journal of Biological Chemistry | 2013

Noncanonical Transforming Growth Factor β (TGFβ) Signaling in Cranial Neural Crest Cells Causes Tongue Muscle Developmental Defects

Junichi Iwata; Akiko Suzuki; Richard Pelikan; Thach-Vu Ho; Yang Chai

Background: TGFβ signaling is required in cranial neural crest (CNC) cells during tongue development. Results: TGFβ-mediated ABL1 activation in CNC cells results in altered Fgf4 and Fst gene expression and a failure of muscle development. Conclusion: TGFβ activates the ABL1 pathway in the absence of TGFβ receptor type II (TβRII) during tongue development. Significance: Activation of noncanonical TGFβ signaling causes microglossia. Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.


Development | 2015

An Nfic-hedgehog signaling cascade regulates tooth root development

Yang Liu; Jifan Feng; Jingyuan Li; Hu Zhao; Thach-Vu Ho; Yang Chai

Coordination between the Hertwigs epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. Summary: During tooth development in mice, Nfic binds to Hhip to control Shh signaling, a process crucial for apical papilla growth and proper root formation.


Development | 2014

TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate

Junichi Iwata; Akiko Suzuki; Toshiaki Yokota; Thach-Vu Ho; Richard Pelikan; Mark M. Urata; Pedro A. Sanchez-Lara; Yang Chai

Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFβ signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2fl/fl;K14-Cre mice. Specifically, muscle mass was decreased in the soft palates of Tgfbr2 mutant mice, following defects in cell proliferation and differentiation. Gene expression of Dickkopf (Dkk1 and Dkk4), negative regulators of WNT-β-catenin signaling, is upregulated in the soft palate of Tgfbr2fl/fl;K14-Cre mice, and WNT-β-catenin signaling is disrupted in the palatal mesenchyme. Importantly, blocking the function of DKK1 and DKK4 rescued the cell proliferation and differentiation defects in the soft palate of Tgfbr2fl/fl;K14-Cre mice. Thus, our findings indicate that loss of TGFβ signaling in epithelial cells compromises activation of WNT signaling and proper muscle development in the soft palate through tissue-tissue interactions, resulting in a cleft soft palate. This information has important implications for prevention and non-surgical correction of cleft soft palate.


Human Molecular Genetics | 2017

Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.

Hua Tian; Jifan Feng; Jingyuan Li; Thach-Vu Ho; Yuan Yuan; Yang Liu; Frederick Brindopke; Jane C. Figueiredo; William P. Magee; Pedro A. Sanchez-Lara; Yang Chai

Abstract Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1‐Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1‐Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC‐derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI‐Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC‐derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.


Human Molecular Genetics | 2014

Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice

Junichi Iwata; Akiko Suzuki; Richard Pelikan; Thach-Vu Ho; Pedro A. Sanchez-Lara; Yang Chai

Mutations in transforming growth factor beta (TGFβ) receptor type II (TGFBR2) cause Loeys-Dietz syndrome, characterized by craniofacial and cardiovascular abnormalities. Mice with a deletion of Tgfbr2 in cranial neural crest cells (Tgfbr2(fl/fl);Wnt1-Cre mice) develop cleft palate as the result of abnormal TGFβ signaling activation. However, little is known about metabolic processes downstream of TGFβ signaling during palatogenesis. Here, we show that Tgfbr2 mutant palatal mesenchymal cells spontaneously accumulate lipid droplets, resulting from reduced lipolysis activity. Tgfbr2 mutant palatal mesenchymal cells failed to respond to the cell proliferation stimulator sonic hedgehog, derived from the palatal epithelium. Treatment with p38 mitogen-activated protein kinase (MAPK) inhibitor or telmisartan, a modulator of p38 MAPK activation and lipid metabolism, blocked abnormal TGFβ-mediated p38 MAPK activation, restoring lipid metabolism and cell proliferation activity both in vitro and in vivo. Our results highlight the influence of alternative TGFβ signaling on lipid metabolic activities, as well as how lipid metabolic defects can affect cell proliferation and adversely impact palatogenesis. This discovery has broader implications for the understanding of metabolic defects and potential prevention of congenital birth defects.


Developmental Biology | 2015

Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development

Thach-Vu Ho; Junichi Iwata; Hoang Anh Ho; Weston Grimes; Shery Park; Pedro A. Sanchez-Lara; Yang Chai

Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.


Journal of Dental Research | 2018

Smad6 Methylation Represses NFκB Activation and Periodontal Inflammation

Tingwei Zhang; Jian Wu; N. Ungvijanpunya; Olan Jackson-Weaver; Yongchao Gou; Jifan Feng; Thach-Vu Ho; Yudao Shen; Jing Liu; S. Richard; Jian Jin; George Hajishengallis; Yang Chai; Jian Xu

The balance between pro- and anti-inflammatory signals maintains tissue homeostasis and defines the outcome of chronic inflammatory diseases such as periodontitis, a condition that afflicts the tooth-supporting tissues and exerts an impact on systemic health. The induction of tissue inflammation relies heavily on Toll-like receptor (TLR) signaling, which drives a proinflammatory pathway through recruiting myeloid differentiation primary response gene 88 (MyD88) and activating nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). TLR-induced production of proinflammatory cytokines and chemokines is reined in by anti-inflammatory cytokines, including the transforming growth factor β (TGFβ) family of cytokines. Although Smad6 is a key mediator of TGFβ-induced anti-inflammatory signaling, the exact mechanism by which TGFβ regulates TLR proinflammatory signaling in the periodontal tissue has not been addressed to date. In this study, we demonstrate for the first time that the ability of TGFβ to inhibit TLR-NFκB signaling is mediated by protein arginine methyltransferase 1 (PRMT1)–induced Smad6 methylation. Upon methylation, Smad6 recruited MyD88 and promoted MyD88 degradation, thereby inhibiting NFκB activation. Most important, Smad6 is expressed and methylated in the gingival epithelium, and PRMT1-Smad6 signaling promotes tissue homeostasis by limiting inflammation. Consistent with this, disturbance of Smad6 methylation exacerbates inflammation and bone loss in experimental periodontitis. The dissected mechanism is therapeutically important, as it highlights the manipulation of PRMT1-Smad6 signaling as a novel promising strategy to modulate the host immune response in periodontitis.


Mechanisms of Development | 2018

Prmt1 regulates craniofacial bone formation upstream of Msx1

Yongchao Gou; Jingyuan Li; Jian Wu; Rahul Gupta; Ihnbae Cho; Thach-Vu Ho; Yang Chai; Amy E. Merrill; J. Wang; Jian Xu

Protein arginine methylation has been recently identified as an important form of post-translational modification (PTM). It is carried out by the protein arginine methyltransferase (PRMT) family of enzymes, which in mammals consists of nine members. Among them, PRMT1 is the major arginine methyltransferase and participates in transcription, signal transduction, development and cancer. The function of PRMT1 in craniofacial development remains unclear. We generated Wnt1-Cre;Prmt1fl/fl mice with cranial neural crest (CNC)-specific deletion of Prmt1 and compared CNC-derived craniofacial bones from newborn control and Wnt1-Cre;Prmt1fl/fl mice. The size, surface area and volume of the premaxilla, maxilla, palatine bone, frontal bone, and mandible were analyzed using three-dimensional (3D) micro-computed tomography (microCT). We found that Prmt1 deficiency led to alterations in craniofacial bones including the premaxilla, maxilla, palatine bone, frontal bone, and mandible, as well as defects in the incisor and alveolar bone, recapitulating changes seen in Msx1-deficient mice. We further determined that Prmt1 depletion resulted in significant downregulation of Msx1 in calvaria-derived preosteoblast and primordium of frontal bone and mandible. Our study reveals critical roles of PRMT1 in the formation of CNC-derived craniofacial bones and suggests that Prmt1 is an upstream regulator of Msx1 in craniofacial bone development.

Collaboration


Dive into the Thach-Vu Ho's collaboration.

Top Co-Authors

Avatar

Yang Chai

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jifan Feng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jingyuan Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Junichi Iwata

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pedro A. Sanchez-Lara

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Akiko Suzuki

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jian Xu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge