Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thad Druffel is active.

Publication


Featured researches published by Thad Druffel.


ACS Applied Materials & Interfaces | 2013

Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films

Ruvini Dharmadasa; Menaka Jha; Delaina A. Amos; Thad Druffel

Conducting films are becoming increasingly important for the printed electronics industry with applications in various technologies including antennas, RFID tags, photovoltaics, flexible electronics, and displays. To date, expensive noble metals have been utilized in these conductive films, which ultimately increases the cost. In the present work, more economically viable copper based conducting films have been developed for both glass and flexible PET substrates, using copper and copper oxide nanoparticles. The copper nanoparticles (with copper(I) oxide impurity) are synthesized by using a simple copper reduction method in the presence of Tergitol as a capping agent. Various factors such as solvent, pH, and reductant concentration have been explored in detail and optimized in order to produce a nanoparticle ink at room temperature. Second, the ink obtained at room temperature was used to fabricate conducting films by intense pulse light sintering of the deposited films. These conducting films had sheet resistances as low as 0.12 Ω/□ over areas up to 10 cm(2) with a thickness of 8 μm.


Small | 2008

Polymer Nanocomposite Thin Film Mirror for the Infrared Region

Thad Druffel; Natalia Mandzy; Mahendra K. Sunkara; Eric A. Grulke

Thin film metal oxide coatings have been used commercially as electromagnetic filters from the UV to infrared regions for over half a century. Deposition onto a substrate has typically been accomplished using vapor deposition techniques [1‐3] and more recently sol‐gel methods. [4‐7] These coatings provide very good optical and mechanical performance when applied to substrates with similar thermal and mechanical properties. When conventional metal oxide coatings are applied to flexible, relatively soft substrates such as polymers, mismatches in mechanical properties can reduce interfacial adhesion or accelerate mechanical failures. [8,9] Theauthorsrecentlyshowedthatathinfilmpolymer nanocomposite can be applied to a polymer substrate and maintain adhesion even under high strains. [10] This paper describes the first time demonstration of an IR mirror using a relatively inexpensive method to apply complicated thin film dielectric stacks to a polymer substrate that can function effectively in high strain systems. Ultrathin layers of polymer nanocomposites can be used to develop electromagnetic filters, with improved mechanical performance, on compliant substrates such as polymers. Self-assembled polymer nanocomposite thin film layers composed of UV-cured acrylates and metal oxide nanoparticles were developed as antireflective coatings for ophthalmic lenses. [11,12] The primary failure mode in this application is associated with intrinsic stresses introduced during processing and thermal cycling of the plastic. Nanocomposite coatings outperform ceramic coatings on plastic substrates because the primary failures are ductile, limiting secondary cracks propagating from abrasions and thereby reducing haze. [10] Ceramic thin films in similar studies exhibited brittle fracture, which led to secondary cracks and higher haze measurements. [8,9] The use of nanoparticles at high packing densities,


Nanotechnology | 2006

Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter.

Thad Druffel; Kebin Geng; Eric A. Grulke

Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage.


ACS Applied Materials & Interfaces | 2014

Intense Pulsed Light Treatment of Cadmium Telluride Nanoparticle- Based Thin Films

Ruvini Dharmadasa; Brandon W. Lavery; I. M. Dharmadasa; Thad Druffel

The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.


ACS Applied Materials & Interfaces | 2015

Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink

Gabriel L. Draper; Ruvini Dharmadasa; Meghan E. Staats; Brandon W. Lavery; Thad Druffel

Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.


Journal of Physical Chemistry A | 2013

Spectroscopic Investigation of Photoinduced Charge-Transfer Processes in FTO/TiO2/N719 Photoanodes with and without Covalent Attachment through Silane-Based Linkers

Bill Pandit; Tulashi Luitel; Dustin R. Cummins; Arjun Kumar Thapa; Thad Druffel; Frank Zamborini; Jinjun Liu

Understanding electron-transfer (ET) processes in dye-sensitized solar cells (DSSCs) is crucial to improving their device performance. Recently, covalent attachment of dye molecules to mesoporous semiconductor nanoparticle films via molecular linkers has been employed to increase the stability of DSSC photoanodes. The power conversion efficiency (PCE) of these DSSCs, however, is lower than DSSCs with conventional unmodified photoanodes in this study. Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been used to study the electron injection process from N719 dye molecules to TiO2 nanoparticles (NPs) in DSSC photoanodes with and without the presence of two silane-based linker molecules: 3-aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS). Ultrafast biphasic electron injection kinetics were observed in all three photoanodes using a 530 nm pump wavelength and 860 nm probe wavelength. Both the slow and fast decay components, attributed to electron injection from singlet and triplet excited states, respectively, of the N719 dye to the TiO2 conduction band, are hindered by the molecular linkers. The hindering effect is less significant with the APhS linker than the APTES linker and is more significant for the singlet-state channel than the triplet-state one. Electron injection from the vibrationally excited states is less affected by the linkers. The spectroscopic results are interpreted on the basis of the standard ET theory and can be used to guide selection of molecular linkers for DSSCs with better device performance. Other factors that affect the efficiency and stability of the DSSCs are also discussed. The relatively lower PCE of the covalently attached photoanodes is attributed to the multilayer and aggregation of the dye molecules as well as the linkers.


ACS Applied Materials & Interfaces | 2016

Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells

Brandon W. Lavery; Sudesh Kumari; Hannah Konermann; Gabriel L. Draper; Joshua M. Spurgeon; Thad Druffel

Perovskite solar cells utilizing a two-step deposited CH3NH3PbI3 thin film were rapidly sintered using an intense pulsed light source. For the first time, a heat treatment has shown the capability of sintering methylammonium lead iodide perovskite and creating large crystal sizes approaching 1 μm without sacrificing surface coverage. Solar cells with an average efficiency of 11.5% and a champion device of 12.3% are reported. The methylammonium lead iodide perovskite was subjected to 2000 J of energy in a 2 ms pulse of light generated by a xenon lamp, resulting in temperatures significantly exceeding the degradation temperature of 150 °C. The process opens up new opportunities in the manufacturability of perovskite solar cells by eliminating the rate-limiting annealing step, and makes it possible to envision a continuous roll-to-roll process similar to the printing press used in the newspaper industry.


Nanotechnology | 2009

Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor

Biswapriya Deb; Vivekanand Kumar; Thad Druffel; Mahendra K. Sunkara

Functionalizing nanoparticle surfaces is essential for achieving homogeneous dispersions of monodisperse particles in polymer nanocomposites for successful utilization in engineering applications. Functionalization reduces the surface energy of the nanoparticles, thereby limiting the tendency to agglomerate. Moreover, reactive groups on the surface can also participate in the polymerization, creating covalent bonds between the inorganic and organic phases. In this paper, a fluidized bed inductively coupled plasma (FB-ICP) reactor is used to break apart the agglomerates and functionalize commercial TiO2 nanoparticle powders in a batch of several grams. The fluidized bed could be implemented into a continuous flow reactor, potentially making this a viable method to treat larger quantities of commercial powders. The particles are treated with acrylic acid (AA) and tetraethylorthosilicate (TEOS) plasma and the functionalized particles were collected separately from bulk powder. High resolution transmission electron microscopy (HRTEM) analysis showed that the particles were coated uniformly with polymer coatings with thicknesses around a few nanometers. Fourier-transformed infrared spectroscopy (FTIR) studies of the polymer-coated particles showed the presence of different functional groups (poly-acrylic acid/siloxane) similar to that present in the bulk films. The dispersion behavior of the TiO2 nanoparticles showed much improvement with reduced agglomerate size.


Journal of Coatings Technology and Research | 2015

Processing of CdTe thin films by intense pulsed light in the presence of CdCl2

Ruvini Dharmadasa; Brandon W. Lavery; I. M. Dharmadasa; Thad Druffel

AbstractIntense pulsed light (IPL) treatment was used for rapid thermal processing of electroplated CdTe layers, with and without CdCl2. Electroplated CdTe layers consist of small grains showing highly preferential orientation along the (111) planes. IPL processing improves the crystallinity keeping the (111) preferred orientation until an energy input threshold is reached. IPL treatment beyond this point shows a sudden structural transition within the layer with a decrease in each of the orientations. The addition of a CdCl2 treatment prior to the IPL initiates a transition from the preferred (111) orientation to randomly oriented grains throughout the film. X-ray diffraction, scanning electron microscopy, and optical microscopy were used to study the structural and morphological changes of these films.


Journal of Materials Chemistry | 2014

Nanowire architectures for iodide free dye-sensitized solar cells

Venkat Kalyan Vendra; Tu Quang Nguyen; Thad Druffel; Jacek B. Jasinski; Delaina A. Amos; Mahendra K. Sunkara

In this study, we show that the performance of iodide free redox couples in dye-sensitized solar cells could be significantly improved by engineering the electron transport and surface properties of the electrode materials. Specifically, tin oxide nanowires electrophoretically coated with titania nanoparticles and subsequently passivated with a submonolayer of alumina by atomic layer deposition show a remarkable ten-fold increase in short-circuit current densities over those obtained with titania nanoparticles, even when a typical N-719 dye is used for sensitization. Comparison of the performance of different electrode materials such as nanowires, nanoparticles and nanowire–nanoparticle hybrid architectures of tin oxide and titania suggests that fast electron transport helps in improving the short-circuit current density with ferrocene/ferrocenium and TEMPO redox couples. The nature of the surface trap states and their passivation have a significant effect on the electron lifetimes in the semiconductor and the resulting open-circuit voltage with these redox couples. The higher electron diffusion lengths with the tin oxide nanowire based architectures allow for thicker electrodes with enhanced dye loading. The analysis of literature data on DSCs made using different dyes and alternate redox couples suggests smaller delta G or reorganization energy for non-ruthenium based dyes.

Collaboration


Dive into the Thad Druffel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. M. Dharmadasa

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge