Thaddeus W.W. Pace
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thaddeus W.W. Pace.
Nature Neuroscience | 2013
Torsten Klengel; Divya Mehta; Christoph Anacker; Monika Rex-Haffner; Jens C. Pruessner; Carmine M. Pariante; Thaddeus W.W. Pace; Kristina B. Mercer; Helen S. Mayberg; Bekh Bradley; Charles B. Nemeroff; Florian Holsboer; Christine Heim; Kerry J. Ressler; Theo Rein; Elisabeth B. Binder
Although the fact that genetic predisposition and environmental exposures interact to shape development and function of the human brain and, ultimately, the risk of psychiatric disorders has drawn wide interest, the corresponding molecular mechanisms have not yet been elucidated. We found that a functional polymorphism altering chromatin interaction between the transcription start site and long-range enhancers in the FK506 binding protein 5 (FKBP5) gene, an important regulator of the stress hormone system, increased the risk of developing stress-related psychiatric disorders in adulthood by allele-specific, childhood trauma–dependent DNA demethylation in functional glucocorticoid response elements of FKBP5. This demethylation was linked to increased stress-dependent gene transcription followed by a long-term dysregulation of the stress hormone system and a global effect on the function of immune cells and brain areas associated with stress regulation. This identification of molecular mechanisms of genotype-directed long-term environmental reactivity will be useful for designing more effective treatment strategies for stress-related disorders.
American Journal of Psychiatry | 2006
Thaddeus W.W. Pace; Tanja Mletzko; Oyetunde Alagbe; Charles B. Nemeroff; Andrew H. Miller; Christine Heim
OBJECTIVE The authors sought to determine innate immune system activation following psychosocial stress in patients with major depression and increased early life stress. METHOD Plasma interleukin (IL)-6, lymphocyte subsets, and DNA binding of nuclear factor (NF)-kB in peripheral blood mononuclear cells were compared in medically healthy male subjects with current major depression and increased early life stress (N=14) versus nondepressed male comparison subjects (N=14) before and after completion of the Trier Social Stress Test. RESULTS Trier Social Stress Test-induced increases in IL-6 and NF-kappaB DNA-binding were greater in major depression patients with increased early life stress and independently correlated with depression severity, but not early life stress. Natural killer (NK) cell percentages also increased following stress. However, there were no differences between groups and no correlation between NK cell percentage and stress-induced NF-kappaB DNA-binding or IL-6. CONCLUSIONS Male major depression patients with increased early life stress exhibit enhanced inflammatory responsiveness to psychosocial stress, providing preliminary indication of a link between major depression, early life stress and adverse health outcomes in diseases associated with inflammation.
Psychoneuroendocrinology | 2009
Thaddeus W.W. Pace; Lobsang Tenzin Negi; Daniel D. Adame; Steven P. Cole; Teresa I. Sivilli; Timothy D. Brown; Michael J. Issa; Charles L. Raison
Meditation practices may impact physiological pathways that are modulated by stress and relevant to disease. While much attention has been paid to meditation practices that emphasize calming the mind, improving focused attention, or developing mindfulness, less is known about meditation practices that foster compassion. Accordingly, the current study examined the effect of compassion meditation on innate immune, neuroendocrine and behavioral responses to psychosocial stress and evaluated the degree to which engagement in meditation practice influenced stress reactivity. Sixty-one healthy adults were randomized to 6 weeks of training in compassion meditation (n=33) or participation in a health discussion control group (n=28) followed by exposure to a standardized laboratory stressor (Trier social stress test [TSST]). Physiologic and behavioral responses to the TSST were determined by repeated assessments of plasma concentrations of interleukin (IL)-6 and cortisol as well as total distress scores on the Profile of Mood States (POMS). No main effect of group assignment on TSST responses was found for IL-6, cortisol or POMS scores. However, within the meditation group, increased meditation practice was correlated with decreased TSST-induced IL-6 (r(p)=-0.46, p=0.008) and POMS distress scores (r(p)=-0.43, p=0.014). Moreover, individuals with meditation practice times above the median exhibited lower TSST-induced IL-6 and POMS distress scores compared to individuals below the median, who did not differ from controls. These data suggest that engagement in compassion meditation may reduce stress-induced immune and behavioral responses, although future studies are required to determine whether individuals who engage in compassion meditation techniques are more likely to exhibit reduced stress reactivity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Divya Mehta; Torsten Klengel; Karen N. Conneely; Alicia K. Smith; Andre Altmann; Thaddeus W.W. Pace; Monika Rex-Haffner; Anne Loeschner; Mariya Gonik; Kristina B. Mercer; Bekh Bradley; Bertram Müller-Myhsok; Kerry J. Ressler; Elisabeth B. Binder
Childhood maltreatment is likely to influence fundamental biological processes and engrave long-lasting epigenetic marks, leading to adverse health outcomes in adulthood. We aimed to elucidate the impact of different early environment on disease-related genome-wide gene expression and DNA methylation in peripheral blood cells in patients with posttraumatic stress disorder (PTSD). Compared with the same trauma-exposed controls (n = 108), gene-expression profiles of PTSD patients with similar clinical symptoms and matched adult trauma exposure but different childhood adverse events (n = 32 and 29) were almost completely nonoverlapping (98%). These differences on the level of individual transcripts were paralleled by the enrichment of several distinct biological networks between the groups. Moreover, these gene-expression changes were accompanied and likely mediated by changes in DNA methylation in the same loci to a much larger proportion in the childhood abuse (69%) vs. the non-child abuse-only group (34%). This study is unique in providing genome-wide evidence of distinct biological modifications in PTSD in the presence or absence of exposure to childhood abuse. The findings that nonoverlapping biological pathways seem to be affected in the two PTSD groups and that changes in DNA methylation appear to have a much greater impact in the childhood-abuse group might reflect differences in the pathophysiology of PTSD, in dependence of exposure to childhood maltreatment. These results contribute to a better understanding of the extent of influence of differences in trauma exposure on pathophysiological processes in stress-related psychiatric disorders and may have implications for personalized medicine.
Annals of the New York Academy of Sciences | 2009
Thaddeus W.W. Pace; Andrew H. Miller
Data suggest that the activation of immune responses and the release of inflammatory cytokines may play a role in the pathophysiology of major depression. One mechanism by which cytokines may contribute to depression is through their effects on the glucocorticoid receptor (GR). Altered GR function in depression has been demonstrated by neuroendocrine challenge tests that reliably reveal reduced GR sensitivity as manifested by nonsuppression of cortisol following dexamethasone administration in vivo and lack of immune suppression following administration of glucocorticoids in vitro. Relevant to the GR, cytokines have been shown to decrease GR expression, block translocation of the GR from cytoplasm to nucleus, and disrupt GR‐DNA binding through nuclear protein‐protein interactions. In addition, cytokines have been shown to increase the expression of the relatively inert GR beta isoform. Specific cytokine signaling molecules that have been shown to be involved in the disruption of GR activity include p38 mitogen‐activated protein kinase, which is associated with reduced GR translocation, and signal transducer and activator of transcription (STAT)5, which binds to GR in the nucleus. Nuclear factor‐κB (NF‐κB) also has been shown to lead to GR suppression through mutually inhibitory GR‐NF‐κB nuclear interactions. Interestingly, several antidepressants have been shown to enhance GR function, as has activation of protein kinase A (PKA). Antidepressants and PKA activation have also been found to inhibit inflammatory cytokines and their signaling pathways, suggesting that drugs that target both inflammatory responses and the GR may have special efficacy in the treatment of depression.
Brain Behavior and Immunity | 2011
Thaddeus W.W. Pace; Christine Heim
Posttraumatic stress disorder (PTSD) is a serious and debilitating condition with a prevalence rate of approximately 8% in the United States. Given the number of veterans returning from conflicts around the globe with PTSD, and the substantial number of civilians experiencing traumas, new perspectives on the biology of PTSD are needed. Based on the concept that PTSD is a disorder of stress response systems, numerous studies have suggested changes in hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal-medullary (SAM) system function in patients with PTSD. Given that both glucocorticoids and catecholamines exert powerful effects on the immune system, it is surprising that relatively few studies have examined immune changes in patients with PTSD. Moreover, patients with PTSD are known to have increased rates of comorbidity with somatic disorders that involve immune and inflammatory processes. Patients with PTSD have been found to exhibit a number of immune changes including increased circulating inflammatory markers, increased reactivity to antigen skin tests, lower natural killer cell activity, and lower total T lymphocyte counts. Studies with humans and rodents suggest that certain proinflammatory cytokines are able to induce neurochemical and behavioral changes that resemble some key features of PTSD. This short article reviews immune alterations in PTSD, and considers possible mechanisms by which such changes may be related to neuroendocrine alterations and medical comorbidities of PTSD.
Neuroscience | 2006
Milena Girotti; Thaddeus W.W. Pace; Reginald I. Gaylord; B. A. Rubin; James P. Herman; Robert L. Spencer
Rats repeatedly exposed to restraint show a reduced hypothalamic-pituitary-adrenal axis response upon restraint re-exposure. This hypothalamic-pituitary-adrenal axis response habituation to restraint does not generalize to other novel stressors and is associated with a decrease in stress-induced c-fos expression in a number of stress-reactive brain regions. We examined whether habituation to repeated restraint is also associated with adaptation of immediate early gene expression in brain regions that process and relay primary sensory information. These brain regions may not be expected to show gene expression adaptation to repeated restraint because of their necessary role in experience discrimination. Rats were divided into a repeated restraint group (five 1-hour daily restraint sessions) and an unstressed group (restraint naïve). On the sixth day rats from each group were either killed with no additional stress experience or at 15, 30 or 60 min during restraint. Immediate early gene expression (corticotrophin-releasing hormone heteronuclear RNA, c-fos mRNA, zif268 mRNA) was determined by in situ hybridization. A reduction in stress-induced hypothalamic-pituitary-adrenal axis hormone secretion (plasma corticosterone and adrenocorticotropic hormone) and immediate early gene expression levels in the paraventricular nucleus of the hypothalamus, the lateral septum and the orbital cortex was observed in repeated restraint as compared with restraint naïve animals. This reduction was already evident at 15 min of restraint. Unexpectedly, we also found in repeated restraint rats a reduction in restraint-induced c-fos expression in primary sensory-processing brain areas (primary somatosensory cortex, and ventroposteriomedial and dorsolateral geniculate nuclei of thalamus). The overall levels of hippocampal mineralocorticoid receptor heteronuclear RNA or glucocorticoid receptor mRNA were not decreased by repeated restraint, as may occur in response to severe chronic stress. We propose that repeated restraint leads to a systems-level adaptation whereby re-exposure to restraint elicits a rapid inhibitory modulation of primary sensory processing (i.e. sensory gating), thereby producing a widespread attenuation of the neural response to restraint.
Frontiers in Human Neuroscience | 2012
Gaëlle Desbordes; Lobsang Tenzin Negi; Thaddeus W.W. Pace; B. Alan Wallace; Charles L. Raison; Eric L. Schwartz
The amygdala has been repeatedly implicated in emotional processing of both positive and negative-valence stimuli. Previous studies suggest that the amygdala response to emotional stimuli is lower when the subject is in a meditative state of mindful-attention, both in beginner meditators after an 8-week meditation intervention and in expert meditators. However, the longitudinal effects of meditation training on amygdala responses have not been reported when participants are in an ordinary, non-meditative state. In this study, we investigated how 8 weeks of training in meditation affects amygdala responses to emotional stimuli in subjects when in a non-meditative state. Healthy adults with no prior meditation experience took part in 8 weeks of either Mindful Attention Training (MAT), Cognitively-Based Compassion Training (CBCT; a program based on Tibetan Buddhist compassion meditation practices), or an active control intervention. Before and after the intervention, participants underwent an fMRI experiment during which they were presented images with positive, negative, and neutral emotional valences from the IAPS database while remaining in an ordinary, non-meditative state. Using a region-of-interest analysis, we found a longitudinal decrease in right amygdala activation in the Mindful Attention group in response to positive images, and in response to images of all valences overall. In the CBCT group, we found a trend increase in right amygdala response to negative images, which was significantly correlated with a decrease in depression score. No effects or trends were observed in the control group. This finding suggests that the effects of meditation training on emotional processing might transfer to non-meditative states. This is consistent with the hypothesis that meditation training may induce learning that is not stimulus- or task-specific, but process-specific, and thereby may result in enduring changes in mental function.
Brain Behavior and Immunity | 2011
Thaddeus W.W. Pace; Katja Wingenfeld; Iris Schmidt; Gunther Meinlschmidt; Dirk H. Hellhammer; Christine Heim
In addition to neuroendocrine changes PTSD pathophysiology may also involve dysfunction of the innate immune inflammatory system. PTSD patients have been found to exhibit increased concentrations of circulating inflammatory markers such as C-reactive protein and interleukin-6, suggesting dysfunction of the innate immune inflammatory system. However, few studies have investigated molecular signaling pathways known to critically regulate inflammation. Additionally, the relationship between inflammatory function and immune cell glucocorticoid sensitivity has not been extensively explored in PTSD. Nuclear factor-κB (NF-κB) pathway activity was examined in peripheral blood mononuclear cells obtained from 12 women with childhood abuse-related PTSD and 24 healthy controls (ages 19-48) using DNA-binding ELISA. Glucocorticoid sensitivity of monocytes in whole blood was measured as the concentration of dexamethasone needed to suppress in vitro lipopolysaccharide-induced tumor necrosis factor-alpha production by 50% (DEX IC(50)). Women with PTSD displayed increased NF-κB pathway activity compared to controls (t [34]=2.45, p=0.02) that was positively correlated with PTSD severity (determined by PTSD symptom severity scale) (r(s)=0.39, p=0.02). Increased NF-κB pathway activity was associated with increased whole blood monocyte DEX IC(50) (i.e. decreased sensitivity of monocytes to glucocorticoids) across all participants (r=0.66, p<0.001). These findings suggest that enhanced inflammatory system activity in participants with childhood abuse-related PTSD is observable at the level of NF-κB, and that in general decreased immune cell glucocorticoid sensitivity may contribute to increased NF-κB pathway activity. Enhanced inflammation may contribute to co-morbid somatic disease risk in persons with childhood abuse-related PTSD.
International Immunopharmacology | 2012
Anlys Olivera; Terry W. Moore; Fang Hu; Andrew P. Brown; Aiming Sun; Dennis C. Liotta; James P. Snyder; Younghyoun Yoon; Hyunsuk Shim; Adam I. Marcus; Andrew H. Miller; Thaddeus W.W. Pace
Nuclear factor kappa B (NF-κB) is a key signaling molecule in the elaboration of the inflammatory response. Data indicate that curcumin, a natural ingredient of the curry spice turmeric, acts as a NF-κB inhibitor and exhibits both anti-inflammatory and anti-cancer properties. Curcumin analogs with enhanced activity on NF-κB and other inflammatory signaling pathways have been developed including the synthetic monoketone compound 3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24). 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31) is a structurally-related curcumin analog whose potency for NF-κB inhibition has yet to be determined. To examine the activity of EF31 compared to EF24 and curcumin, mouse RAW264.7 macrophages were treated with EF31, EF24, curcumin (1-100 μM) or vehicle (DMSO 1%) for 1h. NF-κB pathway activity was assessed following treatment with lipopolysaccharide (LPS) (1 μg/mL). EF31 (IC(50)~5 μM) exhibited significantly more potent inhibition of LPS-induced NF-κB DNA binding compared to both EF24 (IC(50)~35 μM) and curcumin (IC(50) >50 μM). In addition, EF31 exhibited greater inhibition of NF-κB nuclear translocation as well as the induction of downstream inflammatory mediators including pro-inflammatory cytokine mRNA and protein (tumor necrosis factor-α, interleukin-1β, and interleukin-6). Regarding the mechanism of these effects on NF-κB, EF31 (IC(50)~1.92 μM) exhibited significantly greater inhibition of IκB kinase β compared to EF24 (IC(50)~131 μM). Finally, EF31 demonstrated potent toxicity in NF-κB-dependent cancer cell lines while having minimal and reversible toxicity in RAW264.7 macrophages. These data indicate that EF31 is a more potent inhibitor of NF-κB activity than either EF24 or curcumin while exhibiting both anti-inflammatory and anticancer activities. Thus, EF31 represents a promising curcumin analog for further therapeutic development.