Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thaher Pelaseyed is active.

Publication


Featured researches published by Thaher Pelaseyed.


Immunological Reviews | 2014

The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system

Thaher Pelaseyed; Joakim H. Bergström; Jenny K. Gustafsson; Anna Ermund; George M. H. Birchenough; André Schütte; Sjoerd van der Post; Frida Svensson; Ana M. Rodríguez-Piñeiro; Elisabeth E. L. Nyström; Catharina Wising; Malin E. V. Johansson; Gunnar C. Hansson

The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel‐forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyers patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate‐keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103+ type. In addition to the gel‐forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.


Cellular and Molecular Life Sciences | 2011

Composition and functional role of the mucus layers in the intestine

Malin E. V. Johansson; Daniel Ambort; Thaher Pelaseyed; André Schütte; Jenny K. Gustafsson; Anna Ermund; Durai B. Subramani; Jessica Holmén-Larsson; Kristina A. Thomsson; Joakim H. Bergström; Sjoerd van der Post; Ana M. Rodríguez-Piñeiro; Henrik Sjövall; Malin Bäckström; Gunnar C. Hansson

In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.


Annual Review of Cell and Developmental Biology | 2015

Structure, Regulation, and Functional Diversity of Microvilli on the Apical Domain of Epithelial Cells

Cécile Sauvanet; Jessica Wayt; Thaher Pelaseyed; Anthony Bretscher

Microvilli are actin-based structures found on the apical aspect of many epithelial cells. In this review, we discuss different types of microvilli, as well as comparisons with actin-based sensory stereocilia and filopodia. Much is known about the actin-bundling proteins of these structures; we summarize recent studies that focus on the components of the microvillar membrane. We pay special attention to mechanisms of membrane microfilament attachment by the ezrin/radixin/moesin family and regulation of this protein family. We also discuss the NHERF family of scaffolding proteins that are found in microvilli and their role in microvilli regulation. Microvilli on cultured cells are not static structures, and their dynamics and those of their components are discussed. Finally, we mention diseases related to microvilli and outline questions that our current knowledge will allow the field to address in the near future.


Biochemical Journal | 2008

The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine

Emily K. Malmberg; Thaher Pelaseyed; Åsa C. Petersson; Ursula Seidler; Hugo R. de Jonge; John R. Riordan; Gunnar C. Hansson

The membrane-bound mucins have a heavily O-glycosylated extracellular domain, a single-pass membrane domain and a short cytoplasmic tail. Three of the membrane-bound mucins,MUC3, MUC12 and MUC17, are clustered on chromosome 7 and found in the gastrointestinal tract. These mucins have C-terminal sequences typical of PDZ-domain-binding proteins. To identify PDZ proteins that are able to interact with the mucins,we screened PDZ domain arrays using YFP (yellow fluorescent protein)-tagged proteins. MUC17 exhibited a strong binding to PDZK1 (PDZ domain containing 1), whereas the binding toNHERF1 (Na+/H+-exchanger regulatory factor 1) was weak.Furthermore, we showed weak binding of MUC12 to PDZK1, NHERF1 and NHERF2. GST (glutathione transferase) pull-down experiments confirmed that the C-terminal tail of MUC17 coprecipitates with the scaffold protein PDZK1 as identified byMS. This was mediated through the C-terminal PDZ-interaction site in MUC17, which was capable of binding to three of the four PDZ domains in PDZK1. Immunostaining of wild-type or Pdzk1-/- mouse jejunum with an antiserum against Muc3(17),the mouse orthologue of human MUC17, revealed strong brushborder membrane staining in the wild-type mice compared with an intracellular Muc3(17) staining in the Pdzk1-/- mice. This suggests that Pdzk1 plays a specific role in stabilizing Muc3(17)in the apical membrane of small intestinal enterocytes.


Frontiers in Immunology | 2016

Murine Butyrophilin-Like 1 and Btnl6 Form Heteromeric Complexes in Small Intestinal Epithelial Cells and Promote Proliferation of Local T Lymphocytes

Cristina Lebrero-Fernández; Joakim H. Bergström; Thaher Pelaseyed; Anna Bas-Forsberg

To date, few molecular conduits mediating the cross-talk between intestinal epithelial cells and intraepithelial lymphocytes (IELs) have been described. We recently showed that butyrophilin-like (Btnl) 1 can attenuate the epithelial response to activated IELs, resulting in reduced production of proinflammatory mediators, such as IL-6 and CXCL1. We here report that like Btnl1, murine Btnl6 expression is primarily confined to the intestinal epithelium. Although Btnl1 can exist in a cell surface-expressed homomeric form, we found that it additionally forms heteromeric complexes with Btnl6, and that the engagement of Btnl1 is a prerequisite for surface expression of Btnl6 on intestinal epithelial cells. In an IEL-epithelial cell coculture system, enforced epithelial cell expression of Btnl1 significantly enhanced the proliferation of IELs in the absence of exogenous activation. The effect on proliferation was dependent on the presence of IL-2 or IL-15 and restricted to IELs upregulating CD25. In the γδ T-cell subset, the Btnl1–Btnl6 complex, but not Btnl1, specifically elevated the proliferation of IELs bearing the Vγ7Vδ4 receptor. Thus, our results show that murine epithelial cell-specific Btnl proteins can form intrafamily heterocomplexes and suggest that the interaction between Btnl proteins and IELs regulates the expansion of IELs in the intestinal mucosa.


FEBS Journal | 2013

Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell‐protective device

Thaher Pelaseyed; Michael Zäch; Åsa C. Petersson; Frida Svensson; Denny G.A. Johansson; Gunnar C. Hansson

MUC1 and other membrane‐associated mucins harbor long, up to 1 μm, extended highly glycosylated mucin domains and sea urchin sperm protein, enterokinase and agrin (SEA) domains situated on their extracellular parts. These mucins line luminal tracts and organs, and are anchored to the apical cell membrane by a transmembrane domain. The SEA domain is highly conserved and undergoes a molecular strain‐dependent autocatalytic cleavage during folding in the endoplasmic reticulum, a process required for apical plasma membrane expression. To date, no specific function has been designated for the SEA domain. Here, we constructed a recombinant protein consisting of three SEA domains in tandem and used force spectroscopy to assess the dissociation force required to unfold individual, folded SEA domains. Force–distance curves revealed three peaks, each representing unfolding of a single SEA domain. Fitting the observed unfolding events to a worm‐like chain model yielded an average contour length of 32 nm per SEA domain. Analysis of forces applied on the recombinant protein revealed an average unfolding force of 168 pN for each SEA domain at a loading rate of 25 nN·s−1. Thus, the SEA domain may act as a breaking point that can dissociate before the plasma membrane is breached when mechanical forces are applied to cell surfaces.


American Journal of Physiology-cell Physiology | 2013

Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes

Thaher Pelaseyed; Jenny K. Gustafsson; Ida J. Gustafsson; Anna Ermund; Gunnar C. Hansson

We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride and bicarbonate for proper mucin formation. Surface labeling and confocal imaging demonstrated that apically expressed MUC17 in Caco-2 cells and Muc3(17) in murine enterocytes were endocytosed upon stimulation with CCh. Relocation of MUC17 in response to CCh was specific as MUC3 and MUC12 did not relocate following CCh stimulation. MUC17 colocalized with PDZK1 under basal conditions, while MUC17 relocated to the terminal web and into early endosomes after CCh stimulation. CCh stimulation concomitantly internalized the Na(+/)H(+) exchanger 3 (NHE3) and recruited cystic fibrosis transmembrane conductance regulator (CFTR) to the apical membranes, a process that was important for CFTR-mediated bicarbonate secretion necessary for proper gel-forming mucin unfolding. The reason for the specific internalization of MUC17 is not understood, but it could limit the diffusion barrier for ion secretion caused by the apical enterocyte glycocalyx or alternatively act to sample luminal bacteria. Our results reveal well-orchestrated mucus secretion and trafficking of ion channels and the MUC17 mucin.


eLife | 2017

Ezrin activation by LOK phosphorylation involves a PIP2-dependent wedge mechanism

Thaher Pelaseyed; Raghuvir Viswanatha; Cécile Sauvanet; Joshua J Filter; Michael L. Goldberg; Anthony Bretscher

How cells specify morphologically distinct plasma membrane domains is poorly understood. Prior work has shown that restriction of microvilli to the apical aspect of epithelial cells requires the localized activation of the membrane-F-actin linking protein ezrin. Using an in vitro system, we now define a multi-step process whereby the kinase LOK specifically phosphorylates ezrin to activate it. Binding of PIP2 to ezrin induces a conformational change permitting the insertion of the LOK C-terminal domain to wedge apart the membrane and F-actin-binding domains of ezrin. The N-terminal LOK kinase domain can then access a site 40 residues distal from the consensus sequence that collectively direct phosphorylation of the appropriate threonine residue. We suggest that this elaborate mechanism ensures that ezrin is only phosphorylated at the plasma membrane, and with high specificity by the apically localized kinase LOK. DOI: http://dx.doi.org/10.7554/eLife.22759.001


Scientific Reports | 2018

Study of mucin turnover in the small intestine by in vivo labeling

Hannah Schneider; Thaher Pelaseyed; Frida Svensson; Malin E. V. Johansson

Mucins are highly glycosylated proteins which protect the epithelium. In the small intestine, the goblet cell-secreted Muc2 mucin constitutes the main component of the loose mucus layer that traps luminal material. The transmembrane mucin Muc17 forms part of the carbohydrate-rich glycocalyx covering intestinal epithelial cells. Our study aimed at investigating the turnover of these mucins in the small intestine by using in vivo labeling of O-glycans with N-azidoacetylgalactosamine. Mice were injected intraperitoneally and sacrificed every hour up to 12 hours and at 24 hours. Samples were fixed with preservation of the mucus layer and stained for Muc2 and Muc17. Turnover of Muc2 was slower in goblet cells of the crypts compared to goblet cells along the villi. Muc17 showed stable expression over time at the plasma membrane on villi tips, in crypts and at crypt openings. In conclusion, we have identified different subtypes of goblet cells based on their rate of mucin biosynthesis and secretion. In order to protect the intestinal epithelium from chemical and bacterial hazards, fast and frequent renewal of the secreted mucus layer in the villi area is combined with massive secretion of stored Muc2 from goblet cells in the upper crypt.


Journal of Cell Science | 2018

Regulation of actin-based apical structures on epithelial cells

Thaher Pelaseyed; Anthony Bretscher

ABSTRACT Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes. Summary: Apical surfaces of epithelial cells are characterized by the presence of abundant F-actin-based microvilli. We outline recent insights into regulation and maintenance of microvilli and stereocilia.

Collaboration


Dive into the Thaher Pelaseyed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ermund

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Frida Svensson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge