Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thaís Posser is active.

Publication


Featured researches published by Thaís Posser.


Free Radical Biology and Medicine | 2009

Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase

Jeferson Luis Franco; Thaís Posser; Peter R. Dunkley; Phillip W. Dickson; Jacó J. Mattos; Roberta de Paula Martins; Afonso Celso Dias Bainy; Maria Risoleta Freire Marques; Alcir Luiz Dafre; Marcelo Farina

In this study, we investigated the involvement of glutathione peroxidase-GPx in methylmercury (MeHg)-induced toxicity using three models: (a) in mouse brain after treatment with MeHg (40 mg/L in drinking water), (b) in mouse brain mitochondrial-enriched fractions isolated from MeHg-treated animals, and (c) in cultured human neuroblastoma SH-SY5Y cells. First, adult male Swiss mice exposed to MeHg for 21 days showed a significant decrease in GPx activity in the brain and an increase in poly(ADP-ribose) polymerase cleavage, an index of apoptosis. Second, in mitochondrial-enriched fractions isolated from MeHg-treated mice, there was a significant reduction in GPx activity and a concomitant decrease in mitochondrial activity and increases in ROS formation and lipid peroxidation. Incubation of mitochondrial-enriched fractions with mercaptosuccinic acid, a GPx inhibitor, significantly augmented the toxic effects of MeHg administered in vivo. Incubation of mitochondrial-enriched fractions with exogenous GPx completely blocked MeHg-induced mitochondrial lipid peroxidation. Third, SH-SY5Y cells treated for 24 h with MeHg showed a significant reduction in GPx activity. There was a concomitant significant decrease in cell viability and increase in apoptosis. Inhibition of GPx substantially enhanced MeHg toxicity in the SH-SY5Y cells. These results suggest that GPx is an important target for MeHg-induced neurotoxicity, presumably because this enzyme is essential for counteracting the pro-oxidative effects of MeHg both in vitro and in vivo.


Brain Research | 2004

Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats

Fabiano M. Cordova; Ana Lúcia S. Rodrigues; Maria B.O. Giacomelli; Camila S. Oliveira; Thaís Posser; Peter R. Dunkley; Rodrigo Bainy Leal

Lead (Pb(2+)) is widely recognized as a neurotoxicant whose mechanisms of action are not completely established. We have previously demonstrated that Pb(2+) can activate the p38(MAPK) pathway and increase the phosphorylation of Hsp27 in bovine adrenal chromaffin cells and human SH SY5Y cells over a short incubation period (1 h). In the present work we analyzed the effects of Pb(2+) administered in vivo on the level and the phosphorylation state of ERK1/2 and p38(MAPK) in the hippocampus of immature rats. Rats were treated with lead acetate (2, 8 or 12 mg/kg, i.p.) or saline (control) over the 8th to 12th postnatal days, and hippocampal slices were prepared on the 14th day. The Pb(2+) level in the lead-treated animals increased 2.5-6-fold in the blood (3.0-6.0 microg/dl) and 2.0-3.0-fold in the forebrain (78-103 ng/g wet weight), compared to control (saline). The phosphorylation of both ERK1/2 and p38(MAPK) was significantly increased by prior exposure to Pb(2+) in vivo. In in vitro experiments, hippocampal slices from 14-day-old rats were exposed to Pb(2+) (1-10 microM) for 1 and 3 h. There were no changes in the phosphorylation state of ERK and p38(MAPK) for 1-h incubation, whereas a significant increase of ERK1/2 and p38(MAPK) phosphorylation by Pb(2+) (5 microM) was observed for the 3-h incubation. Cell viability measured using MTT was not modified in any of the conditions tested. These results indicate that the phosphorylation of hippocampal ERK1/2 and p38(MAPK) is stimulated by lead in a period of rapid brain development, an effect that may underlie, at least in part, the neurotoxicty elicited by this metal.


European Journal of Pharmacology | 2009

Antidepressant-like effect of the organoselenium compound ebselen in mice : Evidence for the involvement of the monoaminergic system

Thaís Posser; Manuella P. Kaster; Sara Cristiane Baraúna; João Batista Teixeira da Rocha; Ana Lúcia S. Rodrigues; Rodrigo Bainy Leal

Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] is a seleno-organic compound which possesses a potent antioxidant activity and has been shown to exert neuroprotective effects in vitro and in vivo in a variety of pro-oxidative insults. The present study investigates a possible antidepressant activity of ebselen using two predictive tests for antidepressant activity in rodents: the forced swimming test and tail suspension test. Additionally, the mechanisms involved in the antidepressant-like effect of ebselen in mice were also assessed. Ebselen (10 mg/kg, s.c.) decreased the immobility time in the forced swimming test without accompanying changes in ambulation in the open-field test. In contrast, the administration of ebselen (10-30 mg/kg) did not produce any effect in the tail suspension test. The anti-immobility effect of ebselen (10 mg/kg, s.c.) was not prevented by pre-treatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a serotonin 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a serotonin 5-HT(2A/2C) receptor antagonist). On the other hand, the pre-treatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) completely blocked the antidepressant-like effect of ebselen (10 mg/kg, s.c.) in the forced swimming test. It may be concluded that ebselen produces an antidepressant-like effect in the forced swimming test that seems to be dependent on its interaction with the noradrenergic and dopaminergic systems, but not with the serotonergic system.


Archives of Biochemistry and Biophysics | 2008

Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats

Lúcia Maria Vieira de Almeida; Marina Concli Leite; Ana Paula Thomazi; Cíntia Battú; Patrícia Nardin; Lucas Silva Tortorelli; Caroline Zanotto; Thaís Posser; Susana Tchernin Wofchuk; Rodrigo Bainy Leal; Carlos Alberto Saraiva Goncalves; Carmem Gottfried

There is a current interest in dietary compounds (such as trans-resveratrol) that can inhibit or reverse oxidative stress, the common pathway for a variety of brain disorders, including Alzheimers disease and stroke. The objective of the present study was to investigate the effects of resveratrol, under conditions of oxidative stress induced by H(2)O(2), on acute hippocampal slices from Wistar rats. Here, we evaluated cell viability, extracellular lactate, glutathione content, ERK(MAPK) activity, glutamate uptake and S100B secretion. Resveratrol did not change the decrease in lactate levels and in cell viability (by MTT assay) induced by 1mM H(2)O(2), but prevented the increase in cell permeability to Trypan blue induced by H(2)O(2). Moreover, resveratrol per se increased total glutathione levels and prevented the decrease in glutathione induced by 1mM H(2)O(2). The reduction of S100B secretion induced by H(2)O(2) was not changed by resveratrol. Glutamate uptake was decreased in the presence of 1mM H(2)O(2) and this effect was not prevented by resveratrol. There was also a significant activation of ERK1/2 by 1mM H(2)O(2) and resveratrol was able to completely prevent this activation, leading to activity values lower than control levels. The impairments in astrocyte activities, induced by H(2)O(2), confirmed the importance of these cells as targets for therapeutic strategy in brain disorders involving oxidative stress. This study reinforces the protective role of resveratrol and indicates some possible molecular sites of activity of this compound on glial cells, in the acute damage of brain tissue during oxidative stress.


Behavioural Brain Research | 2008

Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc in rats

Jeferson Luis Franco; Thaís Posser; Patricia S. Brocardo; Rafael Trevisan; Marcela Uliano-Silva; Nelson H. Gabilan; Adair R.S. Santos; Rodrigo Bainy Leal; Ana Lúcia S. Rodrigues; Marcelo Farina; Alcir Luiz Dafre

We investigated the antidepressant-like effect of zinc chloride (zinc) administered acutely during 7 days (i.p. route), or chronically during 30 days (oral route) in the forced swimming test (FST) in rats. It was also investigated whether the antidepressant-like effect of zinc is associated with changes in the glutathione antioxidant system in the Wistar rat brain. Animals receiving a single zinc dose (5, 15 and 30 mg/kg, i.p.) 24 h prior to analysis showed no changes in the FST, but glutathione reductase and glutathione S-transferase activity were reduced in the hippocampus and cerebral cortex. This treatment did not, however, affect the glutathione status (GSH and GSSG) in both brain structures. The 7-day zinc treatment (1, 5 and 15 mg/kg, i.p.) caused a mild though significant antidepressant-like effect in the FST at the highest dosing, without affecting the glutathione antioxidant system. Finally, a consistent antidepressant-like effect was achieved in the FST after chronic (30 days) zinc treatment (300 mg/L, p.o.). This was accompanied by a significant increase in total glutathione levels in the hippocampus and cerebral cortex. The good response to oral treatment in the FST led us to investigate other variables, such as ERK phosphorylation and BDNF expression. Similar to therapeutic antidepressants, zinc in chronic oral treatment produced an increase in ERK phosphorylation and BDNF expression in the cerebral cortex. It is our hypothesis that up-regulation of neuroprotective effectors (GSH, ERK and BDNF) may be related to the antidepressant properties of zinc, but this will require additional work to be confirmed.


Brain Research | 2008

Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices.

Thaís Posser; Jeferson Luis Franco; Daiane Almeida dos Santos; Ana Paula Rigon; Marcelo Farina; Alcir Luis Dafré; João Batista Teixeira da Rocha; Rodrigo Bainy Leal

The present study aimed at investigating the potential in vitro protective effect of the organochalcogenide diphenyl diselenide - (PhSe)2 - against hydrogen peroxide (H2O2)-induced toxicity in rat hippocampal slices. Hippocampal slices were treated for 1 h with H2O2 (2 mM) in the presence or absence of (PhSe)2 (0.1-10 microM). H2O2 treatment significantly decreased cell viability (measured by MTT test) and the co-incubation with (PhSe)(2) (10 microM) significantly blunted such phenomenon. The non permeable thiol compounds dithiothreitol (DTT) (100 microM) or reduced glutathione (GSH) (100 microM), which did not display protective effects against H2O2-induced loss of cell viability per se, significantly improved the protective effects elicited by (PhSe)2. Conversely, the permeable form of GSH (GSH monoethyl ester) was unable to alter the neuroprotection mediated by (PhSe)2. The treatment of rat hippocampal slices with H2O2 also increased the lipid peroxidation and decreased the intracellular GSH levels. Moreover, (PhSe)2 (from 0.1 microM) significantly decreased H2O2-induced lipid peroxidation. Interestingly, H2O2 decreased GSH levels and this phenomenon was partially prevented by (PhSe)2. The potential effects of H2O2 on MAPKs phosphorylation (ERK1/2, p38 MAPK and JNK1/2) were also evaluated. Even though H2O2 (2 mM) did not alter p38 MAPK and JNK1/2 phosphorylation in hippocampal slices, it stimulated ERK1/2 phosphorylation and the co-incubation with (PhSe)2 (10 microM) blocked this effect. Taken together, the present results indicate that (PhSe)2 exerts protective effects against H2O2-induced oxidative damage in hippocampal slices and avoided the increase in ERK1/2 phosphorylation promoted by H2O2. The neuroprotective effect of compound seems to be related to its thiol-peroxidase-like activity and appears to occur at the extracellular milieu because a permeable form of GSH was unable to improve the protective effect of the compound as did the impermeable GSH.


Neurotoxicology | 2008

Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK

Ana Paula Rigon; Fabiano M. Cordova; Camila S. Oliveira; Thaís Posser; Ana Paula Costa; Ilza G. Silva; Daiane Almeida dos Santos; Francesco M. Rossi; João Batista Teixeira da Rocha; Rodrigo Bainy Leal

The developing brain is very sensitive to damage by toxic agents, many of which only manifest in adulthood. Cadmium [Cd(II)] is an environmental pollutant which is widely used in industry and is a constituent of tobacco smoke. Exposure to Cd(II) has been linked to detrimental effects on mammalian cells including neural cells. We have investigated the action of Cd(II) on immature hippocampus by assessing cell viability and modulation of AKT/PKB and mitogen-activated protein kinase (MAPK) family members including extracellular signal-regulated kinase (ERK)-1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). Hippocampal slices from immature rats (postnatal day 14; PN14) were incubated with Cd(II) (5-200 microM) for 3h and the effects on protein phosphorylation were analyzed by western blotting. Phosphorylation of p38(MAPK) was enhanced by Cd(II) at all doses tested. Cd(II) also stimulated the phosphorylation of ERK1/2 in a concentration-dependent manner. However, the phosphorylation of JNK and AKT was not altered by the metal. Moreover, Cd(II) reduced cell viability, as measured by MTT reduction. Inhibition of p38 MAPK by SB203580 aggravated the acute Cd(II)-induced impairment of cell viability, whereas inhibition of MEK by PD98059 did not alter the effects of Cd(II). The present data suggest that in immature hippocampal cells p38 MAPK may be a part of signaling pathway that counteracts acute Cd(II) neurotoxicity. In conclusion, our results showed that Cd(II) impairs cell viability and disturbs MAPKs pathways in an important developmental stage for synaptic organization.


Environmental Toxicology | 2014

Effects of Hg(II) Exposure on MAPK Phosphorylation and Antioxidant System in D. melanogaster

Mariane Trindade de Paula; Ana Paula Pegoraro Zemolin; A. P. Vargas; Ronaldo Medeiros Golombieski; E. L. S. Loreto; A. P. Saidelles; Rochele S. Picoloto; Erico M.M. Flores; Antonio Batista Pereira; João Batista Teixeira da Rocha; Thomas J. S. Merritt; Jeferson Luis Franco; Thaís Posser

The heavy metal mercury is a known toxin, but while the mechanisms involved in mercury toxicity have been well demonstrated in vertebrates, little is known about toxicological effects of this metal in invertebrates. Here, we present the results of our study investigating the effects associated with exposure of fruit fly Drosophila melanogaster to inorganic mercury (HgCl2). We quantify survival and locomotor performance as well as a variety of biochemical parameters including antioxidant status, MAPK phosphorylation and gene expression following mercury treatment. Our results demonstrate that exposure to Hg(II) through diet induced mortality and affected locomotor performance as evaluated by negative geotaxis, in D. melanogaster. We also saw a significant impact on the antioxidant system including an inhibition of acetylcholinesterase (Ache), glutathione S‐transferase (GST) and superoxide dismutase (SOD) activities. We found no significant alteration in the levels of mRNA of antioxidant enzymes or NRF‐2 transcriptional factor, but did detect a significant up regulation of the HSP83 gene. Mercury exposure also induced the phosphorylation of JNK and ERK, without altering p38MAPK and the concentration of these kinases. In parallel, Hg(II) induced PARP cleavage in a 89 kDa fragment, suggesting the triggering of apoptotic cell death in response to the treatment. Taken together, this data clarifies and extends our understanding of the molecular mechanisms mediating Hg(II) toxicity in an invertebrate model.


Journal of Neurochemistry | 2009

Manganese induces sustained Ser40 phosphorylation and activation of tyrosine hydroxylase in PC12 cells

Thaís Posser; Jeferson Luis Franco; Larisa Bobrovskaya; Rodrigo Bainy Leal; Phillip W. Dickson; Peter R. Dunkley

Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However, occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity. Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by phosphorylation at Ser40 and chronically by protein synthesis. In this study we used pheochromocytoma 12 cells to investigate the effects of Mn2+ exposure on the phosphorylation and activity of TH. Mn2+ treatment for 24 h caused a sustained increase in Ser40 phosphorylation and TH activity at a concentration of 100 μM, without altering the level of TH protein or PC12 cell viability. Inhibition of protein kinase A and protein kinase C and protein kinases known to be involved in sustained phosphorylation of TH in response to other stimuli did not block the effects of Mn2+ on Ser40 phosphorylation. A substantial increase in H2O2 production occurred in response to 100 μM Mn2+. The antioxidant TroloxTM completely inhibited H2O2 production but did not block TH phosphorylation at Ser40, indicating that oxidative stress was not involved. Sustained TH phosphorylation at Ser40 and the consequent activation of TH both occurred at low concentrations of Mn2+ and this provides a potential new mechanism for Mn2+‐induced neuronal action that does not involve H2O2‐mediated cell death.


Toxicology | 2012

Evidences for a role of glutathione peroxidase 4 (GPx4) in methylmercury induced neurotoxicity in vivo

Ana Paula Pegoraro Zemolin; Daiane Francine Meinerz; M.T. de Paula; D.O.C. Mariano; João Batista Teixeira da Rocha; Antonio Batista Pereira; Thaís Posser; Jeferson Luis Franco

We evaluated the activity and expression of antioxidant enzymes in the cerebellum and cortex of Swiss adult male mice exposed to methylmercury (MeHg) in drinking water (40mg/L) during 21 days. The activity of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and thioredoxin reductase (TrxR) were determined spectrophotometrically. The expression (protein levels) of GPx1 and GPx4 isoforms, TrxR1 as well as heat shock protein 70 (HSP70) were evaluated using specific antibodies and normalized by actin levels. The exposure of mice to MeHg caused a significant impairment in locomotors performance in the open field test (crossings and rearing). This result was followed by a significant reduction of GPx and TrxR activities in the cerebellum and cortex when compared to untreated animals. We also observed a substantial decrease in GPx1, GPx4 and TrxR1 protein levels in the cerebellum, while in the cerebral cortex, only GPx4 and TrxR1 were decreased after MeHg treatment. The activities of the antioxidant enzymes GR, GST, CAT and SOD were increased in the cerebellum after MeHg administration to mice. In contrast, only CAT was increased in the cerebral cortex of MeHg-treated animals. The expression of HSP70 was up-regulated only in the cerebellum where MeHg-exposed mice showed a significant increase in the immunocontent of HSP70 when compared to controls. This is the first report showing a role for GPx4 in the neurotoxicity induced by MeHg in vivo. In addition, our data indicates that the selenoproteins GPx and TrxR as main targets during MeHg exposure, which may be considered in biomarker studies.

Collaboration


Dive into the Thaís Posser's collaboration.

Top Co-Authors

Avatar

Jeferson Luis Franco

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Litiele Cezar da Cruz

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariane Trindade de Paula

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge