Thamara Hesselink
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thamara Hesselink.
Plant Journal | 2009
Sander A. Peters; Erwin Datema; Dóra Szinay; Marjo J. van Staveren; Elio Schijlen; Jan C. van Haarst; Thamara Hesselink; Marleen H. C. Abma-Henkens; Yuling Bai; Hans de Jong; Willem J. Stiekema; René Klein Lankhorst; Roeland C. H. J. van Ham
We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).
Nature plants | 2017
Maria-Cecília D. Costa; Mariana Artur; Julio Maia; Eef Jonkheer; Martijn F. L. Derks; Harm Nijveen; Brett Williams; Sagadevan G. Mundree; José M. Jiménez-Gómez; Thamara Hesselink; Elio Schijlen; Wilco Ligterink; Melvin J. Oliver; Jill M. Farrant; Henk W. M. Hilhorst
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These ‘resurrection species’ may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic ‘clusters of desiccation-associated genes’ (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X. viscosa was found to be uncoupled from drought-induced senescence. We provide strong support for the hypothesis that vegetative desiccation tolerance arose by redirection of genetic information from desiccation-tolerant seeds.
Biosensors and Bioelectronics | 2014
Anke K. Trilling; Thamara Hesselink; Adèle van Houwelingen; Jan Cordewener; Maarten A. Jongsma; Sanne Schoffelen; Jan C. M. van Hest; Han Zuilhof; Jules Beekwilder
Sensitivity of biosensors depends on the orientation of bio-receptors on the sensor surface. The objective of this study was to organize bio-receptors on surfaces in a way that their analyte binding site is exposed to the analyte solution. VHH proteins recognizing foot-and-mouth disease virus (FMDV) were used for making biosensors, and azides were introduced in the VHH to function as bioorthogonal reactive groups. The importance of the orientation of bio-receptors was addressed by comparing sensors with randomly oriented VHH (with multiple exposed azide groups) to sensors with uniformly oriented VHH (with only a single azide group). A surface plasmon resonance (SPR) chip exposing cyclooctyne was reacted to azide functionalized VHH domains, using click chemistry. Comparison between randomly and uniformly oriented bio-receptors showed up to 800-fold increase in biosensor sensitivity. This technique may increase the containment of infectious diseases such as FMDV as its strongly enhanced sensitivity may facilitate early diagnostics.
Transgenic Research | 2011
Frans A. Krens; J.G. Schaart; R. Groenwold; A.E.J. Walraven; Thamara Hesselink; J.T.N.M. Thissen
Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable.
Carbohydrate Research | 2009
Gerard J.A. Rouwendal; Dion E. A. Florack; Thamara Hesselink; Jan Cordewener; Johannes P. F. G. Helsper; Dirk Bosch
Glycoproteins from tobacco line xFxG1, in which expression of a hybrid beta-(1-->4)-galactosyltransferase (GalT) and a hybrid alpha-(1-->3)-fucosyltransferase IXa (FUT9a) is combined, contained an abundance of hybrid N-glycans with Lewis X (Le(X)) epitopes. A comparison with N-glycan profiles from plants expressing only the hybrid beta-(1-->4)-galactosyltransferase suggested that the fucosylation of the LacNAc residues in line xFxG1 protected galactosylated N-glycans from endogenous plant beta-galactosidase activity.
Plant Physiology | 2006
Sander A. Peters; Jan C. van Haarst; Taco P. Jesse; Dennis Woltinge; Kim Jansen; Thamara Hesselink; Marjo J. van Staveren; Marleen H. C. Abma-Henkens; René M. Klein-Lankhorst
We have developed the software package Tomato and Potato Assembly Assistance System (TOPAAS), which automates the assembly and scaffolding of contig sequences for low-coverage sequencing projects. The order of contigs predicted by TOPAAS is based on read pair information; alignments between genomic, expressed sequence tags, and bacterial artificial chromosome (BAC) end sequences; and annotated genes. The contig scaffold is used by TOPAAS for automated design of nonredundant sequence gap-flanking PCR primers. We show that TOPAAS builds reliable scaffolds for tomato (Solanum lycopersicum) and potato (Solanum tuberosum) BAC contigs that were assembled from shotgun sequences covering the target at 6- to 8-fold coverage. More than 90% of the gaps are closed by sequence PCR, based on the predicted ordering information. TOPAAS also assists the selection of large genomic insert clones from BAC libraries for walking. For this, tomato BACs are screened by automated BLAST analysis and in parallel, high-density nonselective amplified fragment length polymorphism fingerprinting is used for constructing a high-resolution BAC physical map. BLAST and amplified fragment length polymorphism analysis are then used together to determine the precise overlap. Assembly onto the seed BAC consensus confirms the BACs are properly selected for having an extremely short overlap and largest extending insert. This method will be particularly applicable where related or syntenic genomes are sequenced, as shown here for the Solanaceae, and potentially useful for the monocots Brassicaceae and Leguminosea.
Transgenic Research | 2011
Maurice Henquet; Jochem Eigenhuijsen; Thamara Hesselink; Holger Spiegel; M.E.L. Schreuder; Esther van Duijn; Jan Cordewener; Anna Depicker; Alexander R. van der Krol; Dirk Bosch
ER resident glycoproteins, including ectopically expressed recombinant glycoproteins, carry so-called high-mannose type N-glycans, which can be at different stages of processing. The presence of heterogeneous high-mannose type glycans on ER-retained therapeutic proteins is undesirable for specific therapeutic applications. Previously, we described an Arabidopsisalg3-2 glycosylation mutant in which aberrant Man5GlcNAc2 mannose type N-glycans are transferred to proteins. Here we show that the alg3-2 mutation reduces the N-glycan heterogeneity on ER resident glycoproteins in seeds. We compared the properties of a scFv-Fc, with a KDEL ER retention tag (MBP10) that was expressed in seeds of wild type and alg3-2 plants. N-glycans on these antibodies from mutant seeds were predominantly of the intermediate Man5GlcNAc2 compared to Man8GlcNAc2 and Man7GlcNAc2 isoforms on MBP10 from wild-type seeds. The presence of aberrant N-glycans on MBP10 did not seem to affect MBP10 dimerisation nor binding of MBP10 to its antigen. In alg3-2 the fraction of underglycosylated MBP10 protein forms was higher than in wild type. Interestingly, the expression of MBP10 resulted also in underglycosylation of other, endogenous glycoproteins.
Journal of Biotechnology | 2017
Joao Gouveia; Jesús Ruiz; Lambertus A. M. van den Broek; Thamara Hesselink; Sander A. Peters; Dorinde M.M. Kleinegris; Alison G. Smith; Douwe van der Veen; Maria J. Barbosa; René H. Wijffels
Botryococcus braunii can produce both long-chain hydrocarbons as well as carbohydrates in large quantities, and is therefore a promising industrial organism for the production of biopolymer building blocks. Many studies describe the use of different strains of Botryococcus braunii but differences in handling and cultivation conditions make the comparison between strains difficult. In this study, 16 B. braunii strains obtained from six culture collections were compared for their biomass productivity and hydrocarbon and carbohydrate content. Biomass productivity was highest for AC768 strain with 1.8gL-1day-1, while hydrocarbon production ranged from none to up to 42% per gram biomass dry weight, with Showa showing the highest hydrocarbon content followed by AC761. The total carbohydrate content varied from 20% to 76% per gram of the biomass dry weight, with CCALA777 as the highest producer. Glucose and galactose are the main monosaccharides in most strains and fucose content reached 463mgL-1 in CCALA778.
Transgenic Research | 2014
Thamara Hesselink; Gerard J.A. Rouwendal; Maurice Henquet; Dion E. A. Florack; Johannes P. F. G. Helsper; Dirk Bosch
Abstractβ1,4-Galactosylation of plant N-glycans is a prerequisite for commercial production of certain biopharmaceuticals in plants. Two different types of galactosylated N-glycans have initially been reported in plants as the result of expression of human β1,4-galactosyltransferase 1 (GalT). Here we show that these differences are associated with differences at its N-terminus: the natural short variant of human GalT results in hybrid type N-glycans, whereas the long form generates bi-antennary complex type N-glycans. Furthermore, expression of non-mammalian, chicken and zebrafish GalT homologues with N-termini resembling the short human GalT N-terminus also induce hybrid type N-glycans. Providing both non-mammalian GalTs with a 13 amino acid N-terminal extension that distinguishes the two naturally occurring forms of human GalT, acted to increase the levels of bi-antennary galactosylated N-glycans when expressed in tobacco leaves. Replacement of the cytosolic tail and transmembrane domain of chicken and zebrafish GalTs with the corresponding region of rat α2,6-sialyltransferase yielded a gene whose expression enhanced the level of bi-antennary galactosylation even further.
Glycobiology | 2013
Elsa Berends; Ludwig Lehle; Maurice Henquet; Thamara Hesselink; Han A. B. Wösten; Luis G. Lugones; Dirk Bosch
Alg3 of Saccharomyces cerevisiae catalyzes the mannosyl transfer from Man-P-Dol to Man(5)GlcNAc(2)-PP-Dol resulting in the formation of Man(6)GlcNAc(2)-PP-Dol, which is then further processed to the final precursor oligosaccharide Glc(3)Man(9)GlcNAc(2) for N-glycosylation of proteins. Here, we identified the alg3 gene of the mushroom-forming fungus Schizophyllum commune by homology search. Its function was confirmed by the complementation of the Δalg3 strain of S. cerevisiae. Inactivation of alg3 in S. commune resulted in the production of predominantly Man(3)GlcNAc(2) protein-linked N-glycans. No impact on growth nor a developmental phenotype due to the deletion was observed. This provides a first step toward engineering of a homogeneous, humanized N-glycosylation pattern for the production of therapeutic glycoproteins in mushrooms.