Thanaporn Amnuaikit
Prince of Songkla University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thanaporn Amnuaikit.
Pharmaceutical Development and Technology | 2013
Wiwat Pichayakorn; Jirapornchai Suksaeree; Prapaporn Boonme; Thanaporn Amnuaikit; Wirach Taweepreda; Garnpimol C. Ritthidej
Film forming polymeric solutions were prepared from DNRL blended with MC, PVA, or SAG, together with dibutylphthalate or glycerine used as plasticizers. These formulations were easily prepared by simple mixing. In a preliminary step, in situ films were prepared by solvent evaporation in a Petri-dish. Their mechanical and physicochemical properties were determined. The in vitro release and skin permeation of nicotine dissolved in these blended polymers were investigated by a modified Franz diffusion cell. The formulations had a white milky appearance, and were homogeneous and smooth in texture. Their pH was suitable for usage in skin contact. The mechanical property of in situ films depended on the ingredients but all compatible films were in an amorphous phase. The DNRL/PVA was shown to be the most suitable mixture to form completed films. The in vitro release and skin permeation studies demonstrated a biphasic release that provided an initial rapid release followed by a constant release rate that fitted the Higuchi’s model. Nicotine loaded DNRL/PVA series were selected for the stability test for 3 months. These formulations needed to be kept at 4°C in tight fitting containers. In conclusion, film forming polymeric solutions could be developed for transdermal nicotine delivery systems.
Medical Devices : Evidence and Research | 2011
Thanaporn Amnuaikit; Toon Chusuit; Panithi Raknam; Prapaporn Boonme
Background Cellulose masks obtained from natural sources such as bacteria are of interest as cosmetic devices for the treatment of dry skin because they not only improve hydration of the skin, but have low toxicity and are biodegradable. The aims of this study were to determine the in vivo effects of a cellulose mask obtained from Acetobacter xylinum on skin characteristics and to evaluate user satisfaction with the product. Methods Thirty healthy Thai volunteers aged 21–40 years participated in the study. The volunteers were randomly separated into a control group and an experimental group. For the control group, volunteers were assigned to apply moist towels to the face for 25 minutes. For the experimental group, the volunteers were assigned to apply the masks, ie, translucent patches which could be fitted onto the face for the same period. The following week, the groups were changed over to the alternative treatment. Skin moisture, sebum, elasticity, texture, dullness, and desquamation levels were assessed using a system used for routine skin counseling before applying the trial product and five minutes after its removal. Degree of satisfaction with use of the cellulose mask was investigated using a five-point rating scale. Results The cellulose mask increased moisture levels in the skin significantly more than moist towels (P < 0.05) after a single application. No obvious effects on other skin characteristics were found. The cellulose mask product rated around 4/5 on the satisfaction rating scale. Conclusions A single application of the trial cellulose mask enhanced moisture uptake by facial skin. Users also reported being satisfied with the trial product.
Evidence-based Complementary and Alternative Medicine | 2013
Julalak Chorachoo; Thanaporn Amnuaikit; Supayang Piyawan Voravuthikunchai
Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100 μmol/mL were used. Formulation with 60 μmol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ-potential (–41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64 μg/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2 μg/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis.
European Journal of Pharmacology | 2016
Julalak Chorachoo; Dennapa Saeloh; Teerapol Srichana; Thanaporn Amnuaikit; Khadar Syed Musthafa; Somporn Sretrirutchai; Supayang Piyawan Voravuthikunchai
Psoriasis is a skin disease associated with hyperproliferation and abnormal differentiation of keratinocytes. Available approaches using synthetic drugs for the treatment of severe psoriasis may cause side effects. Alternatively, plant-derived compounds are now receiving much attention as alternative candidates for the treatment of psoriasis. In this study, the effects of rhodomyrtone, a bioactive plant extract isolated from Rhodomyrtus tomentosa leaves on the proliferation, growth arrest, and apoptosis of HaCaT keratinocytes were investigated. Percentage anti-proliferative activity of rhodomyrtone on HaCaT cells at concentrations of 2-32µg/ml after 24, 48, and 72h ranged from 13.62-61.61%, 50.59-80.16%, and 61.82-85.34%, respectively. In a scratch assay, rhodomyrtone at 2 and 4µg/ml significantly delayed closure of a wound by up to 61.78%, and 71.65%, respectively, after 24h incubation. HaCaT keratinocytes treated with rhodomyrtone showed chromatin condensation and fragmentation of nuclei when stained with Hoechst 33342. This indicated that rhodomyrtone induced apoptosis in the keratinocytes. In addition, flow cytometric analysis demonstrated an increase in the percentage of apoptosis of keratinocytes after treatment with rhodomyrtone at 2-32µg/ml from 1.2-10%, 8.2-35.4%, and 21.0-77.8% after 24, 48, and 72h, respectively, compared with the control. To further develop the compound as a potential anti-psoriasis agent, a rhodomyrtone formulation was prepared and subjected to skin irritation tests in rabbits. The formulation caused no skin irritation including such as erythema and edema. The results indicated that rhodomyrtone had the potential as a promising candidate for further development as a natural anti-psoriasis agent.
Pharmaceutical Development and Technology | 2016
Prapaporn Boonme; Chalida Boonthongchuay; Wibul Wongpoowarak; Thanaporn Amnuaikit
Abstract This study purposed to evaluate a microemulsion containing nicotinamide for its characteristics, stability, and skin penetration and retention comparing with a solution of nicotinamide in 2:1 mixture of water and isopropyl alcohol (IPA). The microemulsion system was composed of 1:1 mixture of Span80 and Tween80 as a surfactant mixture, isopropyl palmitate (IPP) as an oil phase, and 2:1 mixture of water and IPA as an aqueous phase. Nicotinamide microemulsion was prepared by dissolving the active in the aqueous phase before simply mixing with the other components. It was determined for its characteristics and stability under various conditions. The skin penetration and retention studies of nicotinamide microemulsion and solution were performed by modified Franz diffusion cells, using newborn pig skin as the membrane. The results showed that nicotinamide microemulsion could be obtained as clear yellowish liquid, was water-in-oil (w/o) type, possessed Newtonian flow, and exhibited physicochemical stability when kept at 4 °C and room temperature (≈30 ± 2 °C) during 3 months. From the skin penetration data, the microemulsion could enhance the skin penetration of nicotinamide comparing with the solution. Additionally, nicotinamide microemulsion could provide much higher amount of skin retention than that of skin penetration, resulting in suitability for a cosmeceutical product.
Pharmaceutical Development and Technology | 2015
Wiwat Pichayakorn; Jirapornchai Suksaeree; Prapaporn Boonme; Wirach Taweepreda; Thanaporn Amnuaikit; Garnpimol C. Ritthidej
Abstract Novel film forming polymeric dispersions for transdermal nicotine delivery were prepared from deproteinized natural rubber latex (DNRL) blended with hydroxypropylmethylcellulose (HPMC) and dibutyl phthalate (DBP) or glycerin (GLY) as plasticizer. The preliminary molecular compatibility of ingredients was observed by Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry characterizations. All film forming polymeric dispersions were elegant in appearance and smooth in texture without agglomeration. Their pH was 7–8. In addition, their viscosity and spreadability showed good characteristics depended on HPMC and plasticizers blended. The transparent in situ dry films with good strength and elasticity were also confirmed by peeling-off. The nicotine release from them revealed an initial fast release that was similar to the release from a concentrated nicotine solution, and followed by slow release pattern from the in situ films. GLY blended formulation produced a higher amount of nicotine permeation through the in vitro pig skin than DBP blends. Ethanol mixing also enhanced nicotine permeation, but it affected the integrity of in situ films. The nicotine release and skin permeation kinetics were by a diffusion mechanism that was confirmed by the Higuchis model. These formulations were safe without producing any severe skin irritation. However, for the stability they needed to be stored at 4 °C in tightly sealed containers.
BioMed Research International | 2017
Tunyaluk Limsuwan; Prapaporn Boonme; Pasarat Khongkow; Thanaporn Amnuaikit
Ethosome formulations containing phenylethyl resorcinol (PR) were developed. The formulation was produced from 0.5% w/v PR, 0.5% w/v cholesterol from lanolin, 3% w/v L-α-phosphatidylcholine from soybean, 30% v/v absolute ethanol, and water up to 100% v/v. It was characterized by a vesicular size of 389 nm, low polydispersity index of 0.266, zeta potential of −34.19 ± 0.44 mV, high PR entrapment efficiency of 71%, and good stability on storage at 4 and 30°C at 75% RH for 4 months. In vitro studies using pig skin revealed that permeation coefficient of PR from ethosomes was significantly higher than that from liposomes. In vitro retention profiles showed that PR accumulation in pig skin following application of ethosome formulations was 7.4-, 3.3-, and 1.8-fold higher than that achieved using liposomes, 20% propylene glycol solution, and 30% hydroethanolic solution, respectively. An inhibition value of around 80% was measured for antityrosinase activity of PR in pig skin. Consistently, ethosomes exhibited higher tyrosinase inhibition activity and melanin content reduction when compared to other formulations in B16 melanoma cells. Ethosomes did not cause acute dermal irritation in albino rabbits. These findings demonstrate that ethosomes are capable of delivering PR into the skin efficiently and hold promise for topical application of skin lightening products.
Scientifica | 2016
Thanaporn Amnuaikit; Chalermkiat Songkram; Sirirat Pinsuwan
Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid (MPA) which can be metabolized by esterase. MMF has been approved by the United States Food and Drug Administration (USFDA) for treatment of psoriasis patient with skin symptoms. However, it remains unclear whether MMF is efficiently effective to treat skin symptoms developed from psoriasis. The insufficient amount of MMF penetrating through the skin results in the treatment failure due to the difficulty in MMF penetration through the stratum corneum. Skin permeation enhancers such as eucalyptol (EUL) and N-methyl-2-pyrrolidone (NMP) potentially aid in increasing skin penetration. This study aimed to investigate the effects of a concentration ratio (% w/v) between two enhancers (EUL and NMP). The results showed that EUL enhanced MMF permeation with an enhancement ratio (ER) of 3.44 while NMP was not able to promote the penetration of MMF. Interestingly, the synergistic effect of the two enhancers was observed with a suitable ratio given that the ER was 8.21. EUL and NMP are promising enhancers for the development of MMF based skin product.
Archives of Oral Biology | 2018
Wipawee Nittayananta; Surasak Limsuwan; Teerapol Srichana; Chutha Sae-Wong; Thanaporn Amnuaikit
OBJECTIVES Plant-derived compounds are a good source of therapeutic agents and inhibitors of inflammatory process. Dental caries, periodontal diseases and candidiasis are common oral infections caused by virulent biofilms. The objectives of this study were to develop oral spray containing plant-derived compounds; α-mangostin (α-MG) and/or lawsone methyl ether (2-methoxy-1,4-naphthoquinone) (LME) and determine its antimicrobial, anti-biofilm, and anti-inflammatory activities. DESIGN Oral spray formulations were prepared containing α-MG (5 mg/ml) and/or LME (250 μg/ml). Antimicrobial activity against Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis and anti-biofilm formation activities were determined as well as cytotoxicity and anti-inflammatory effects. RESULTS The oral spray demonstrated antimicrobial activity against all three of the oral pathogens tested with stronger effects on C. albicans and S. mutans than P. gingivalis. The formulation containing α-MG (2.5 mg/ml) and LME (125 ug/ml) reduced growth of the microorganisms about 1-2 Log CFU/ml at 1-3 h and the killing effects were complete at 24 h. Based on biofilm assay, the oral spray containing both α-MG and LME showed greater inhibitory effects than those with α-MG or LME. In addition, the oral spray containing both α-MG and LME demonstrated more inhibition of nitric oxide production than α-MG alone. All the formulations were safe and demonstrated greater anti-inflammatory activity at lower concentration (<6.25 μg/ml) than at a higher concentration. CONCLUSION Oral spray containing α-MG and/or LME is effective against common oral pathogens without significant cytotoxicity. Thus, it has the potential to prevent the infections and may serve as adjunctive treatment to conventional therapy.
PeerJ | 2017
Julalak Chokpaisarn; Sasitorn Chusri; Thanaporn Amnuaikit; Wandee Udomuksorn; Supayang Piyawan Voravuthikunchai
Background Quercus infectoria G. Olivier (Fagaceae) nutgalls have been widely employed in traditional Asian medicine for several treatments, especially wounds and skin disorders. However, the effects of this plant on wound healing have not yet been clearly elucidated. This present work was focused on utilization of Quercus infectoria (Qi) as a topical agent for chronic wound treatment. Methods Twenty Qi formulations (QiFs) were pharmaceutically formulated and antibacterial activity of all formulations was performed. The best formulation based on an antibacterial activity was selected for evaluation of wound healing property. Total phenolics, total flavonoids, and an anti-oxidant activity of the selected formulation were also investigated. Wound healing activity was assessed in streptozotocin-induced diabetic rats and control rats. Streptozotocin injection (50 mg/kg) was found to induce marked hyperglycaemia, compared with citrate-injected controls. Two wounds were created on the upper back of each animal. QiF was topically applied three days after wounding to one of the duplicate wounds on each animal and physiological saline (control) was applied to the other. All wounds were cleaned once a day until wound closure. Results QiF10, which exhibited antibacterial and anti-oxidant activities, had the ability to enhance the wound healing process in diabetic rats with abundant cellular infiltration, collagen deposition, and re-epithelialization when compared with the control. Discussion This study suggested that QiF10 could be a novel alternative treatment for diabetic wounds.