Thane G. Maddaford
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thane G. Maddaford.
Cardiovascular Research | 1995
Jason R. B. Dyck; Thane G. Maddaford; Grant N. Pierce; Larry Fliegel
OBJECTIVE The aim was to examine the regulation of the cardiac Na+/H+ exchanger NHE-1 isoform mRNA in response to ischaemia and acidosis in the mammalian myocardium. METHODS Male Sprague Dawley rat hearts were perfused in a non-circulated retrograde fashion according to the Langendorff method. Hearts were perfused for 3 h at flow rates of either 10 ml.min-1 (control), or 3, 1, or 0 ml.min-1 (ischaemia) followed by 5 min of reperfusion. Hearts were immediately frozen in liquid N2, and stored at -80 degrees C until ready for RNA isolation. Northern blot analysis was used to examine expression of the NHE-1 isoform of the Na+/H+ exchanger message in these isolated perfused hearts. Activity of the Na+/H+ exchanger was assessed in primary cultures of neonatal rat myocytes under either control conditions or after treatment with chronic, low external pH. RESULTS A decrease in developed tension and an increase in resting tension was observed which was dependent upon the severity of the ischaemic episode. Low flow ischaemia of 3 ml.min-1 caused increased Na+/H+ exchanger message levels, while perfusion at more reduced flow rates eliminated the increase. Treatment of primary cultures of isolated myocytes with low external pH resulted in increased ability to recover from an acute acid load. CONCLUSIONS Low flow ischaemia can increase the Na+/H+ exchanger message in the intact mammalian myocardium. More severe ischaemia prevents the increase, suggesting that severely damaged tissue may not be capable of the ischaemic response. Primary cultures of isolated myocytes can respond to chronic low external pH by increasing Na+/H+ exchanger activity.
Hypertension | 2013
Delfin Rodriguez-Leyva; Wendy Weighell; Andrea L. Edel; Renee LaVallee; Elena Dibrov; Reinhold Pinneker; Thane G. Maddaford; Bram Ramjiawan; Michel Aliani; Randolph Guzman; Grant N. Pierce
Flaxseed contains &ohgr;-3 fatty acids, lignans, and fiber that together may provide benefits to patients with cardiovascular disease. Animal work identified that patients with peripheral artery disease may particularly benefit from dietary supplementation with flaxseed. Hypertension is commonly associated with peripheral artery disease. The purpose of the study was to examine the effects of daily ingestion of flaxseed on systolic (SBP) and diastolic blood pressure (DBP) in peripheral artery disease patients. In this prospective, double-blinded, placebo-controlled, randomized trial, patients (110 in total) ingested a variety of foods that contained 30 g of milled flaxseed or placebo each day over 6 months. Plasma levels of the &ohgr;-3 fatty acid &agr;-linolenic acid and enterolignans increased 2- to 50-fold in the flaxseed-fed group but did not increase significantly in the placebo group. Patient body weights were not significantly different between the 2 groups at any time. SBP was ≈10 mm Hg lower, and DBP was ≈7 mm Hg lower in the flaxseed group compared with placebo after 6 months. Patients who entered the trial with a SBP ≥140 mm Hg at baseline obtained a significant reduction of 15 mm Hg in SBP and 7 mm Hg in DBP from flaxseed ingestion. The antihypertensive effect was achieved selectively in hypertensive patients. Circulating &agr;-linolenic acid levels correlated with SBP and DBP, and lignan levels correlated with changes in DBP. In summary, flaxseed induced one of the most potent antihypertensive effects achieved by a dietary intervention.
American Journal of Physiology-heart and Circulatory Physiology | 1997
Thane G. Maddaford; Grant N. Pierce
Amiloride analogs block Na+/H+ exchange and thereby protect the heart from myocardial ischemia-reperfusion injury. It is unclear whether drugs must be present before ischemia to be cardioprotective. After 60 min of global ischemia in the coronary-perfused right ventricular wall (RVW), as little as 1 min of exposure to dimethyl amiloride (DMA) immediately at the time of reperfusion protected the RVW. Delaying the drug attenuated the cardioprotection. If DMA was introduced in an ischemic solution near the end of ischemia, the cardioprotective effects were augmented. If the drug was washed out of the RVW vascular space before ischemia, cardioprotection was not observed. In contrast, in whole hearts, preischemic perfusion of the drug was necessary for cardioprotection and the cardioprotection remained even if the drug was washed out before ischemia. We conclude that Na+/H+ exchange is active and contributes to contractile dysfunction during the first seconds of reperfusion. This is difficult to detect in the perfused whole heart, and the washout data suggest that this may be due to a limitation in drug delivery across the vascular wall. The data also suggest that the exchanger is not as active during ischemia itself as it is during reperfusion.Amiloride analogs block Na+/H+exchange and thereby protect the heart from myocardial ischemia-reperfusion injury. It is unclear whether drugs must be present before ischemia to be cardioprotective. After 60 min of global ischemia in the coronary-perfused right ventricular wall (RVW), as little as 1 min of exposure to dimethyl amiloride (DMA) immediately at the time of reperfusion protected the RVW. Delaying the drug attenuated the cardioprotection. If DMA was introduced in an ischemic solution near the end of ischemia, the cardioprotective effects were augmented. If the drug was washed out of the RVW vascular space before ischemia, cardioprotection was not observed. In contrast, in whole hearts, preischemic perfusion of the drug was necessary for cardioprotection and the cardioprotection remained even if the drug was washed out before ischemia. We conclude that Na+/H+exchange is active and contributes to contractile dysfunction during the first seconds of reperfusion. This is difficult to detect in the perfused whole heart, and the washout data suggest that this may be due to a limitation in drug delivery across the vascular wall. The data also suggest that the exchanger is not as active during ischemia itself as it is during reperfusion.
Metabolism-clinical and Experimental | 2009
Chantal M. C. Bassett; Richelle S. McCullough; Andrea L. Edel; Thane G. Maddaford; Elena Dibrov; David P. Blackwood; Jose Alejandro Austria; Grant N. Pierce
Epidemiological evidence has associated dietary trans-fatty acids (TFAs) with coronary heart disease. It is assumed that TFAs stimulate atherosclerosis, but this has not been proven. The purpose of this study was to determine the effects of consuming 2 concentrations of TFAs obtained from commercially hydrogenated vegetable shortening on atherosclerotic development in the presence or absence of elevated dietary cholesterol. Low-density lipoprotein receptor-deficient mice were fed 1 of 7 experimental diets for 14 weeks: low regular fat (LR), low trans-fat (LT), regular high fat, high trans-fat (HT), or a diet containing 2% cholesterol with low regular fat (C + LR), low trans-fat (C + LT), or high trans-fat (C + HT). The extent of lesion development was quantified by en face examination of the dissected aortae. Dietary cholesterol supplementation significantly elevated serum cholesterol levels. Surprisingly, this rise was partially attenuated by the addition of TFAs (C + LT and C + HT) in the diet. Serum triglyceride levels were elevated with the higher-fat diets and with the combination of trans-fat and cholesterol. Animals consuming TFAs in the absence of dietary cholesterol developed a significantly greater extent of aortic atherosclerotic lesions as compared with control animals (LT > LR and HT > regular high fat). Atherosclerotic lesions were more extensive after cholesterol feeding, but the addition of TFAs to this atherogenic diet did not advance atherosclerotic development further. In summary, TFAs are atherogenic on their own; but they do not stimulate further effects beyond the strongly atherogenic effects of dietary cholesterol.
Journal of Nutrition | 2015
Andrea L. Edel; Delfin Rodriguez-Leyva; Thane G. Maddaford; Stephanie P.B. Caligiuri; J. Alejandro Austria; Wendy Weighell; Randolph Guzman; Michel Aliani; Grant N. Pierce
BACKGROUND Dietary flaxseed lowers cholesterol in healthy subjects with mild biomarkers of cardiovascular disease (CVD). OBJECTIVE The aim was to investigate the effects of dietary flaxseed on plasma cholesterol in a patient population with clinically significant CVD and in those administered cholesterol-lowering medications (CLMs), primarily statins. METHODS This double-blind, randomized, placebo-controlled trial examined the effects of a diet supplemented for 12 mo with foods that contained either 30 g of milled flaxseed [milled flaxseed treatment (FX) group; n = 58] or 30 g of whole wheat [placebo (PL) group; n = 52] in a patient population with peripheral artery disease (PAD). Plasma lipids were measured at 0, 1, 6, and 12 mo. RESULTS Dietary flaxseed in PAD patients resulted in a 15% reduction in circulating LDL cholesterol as early as 1 mo into the trial (P = 0.05). The concentration in the FX group (2.1 ± 0.10 mmol/L) tended to be less than in the PL group (2.5 ± 0.2 mmol/L) at 6 mo (P = 0.12), but not at 12 mo (P = 0.33). Total cholesterol also tended to be lower in the FX group than in the PL group at 1 mo (11%, P = 0.05) and 6 mo (11%, P = 0.07), but not at 12 mo (P = 0.24). In a subgroup of patients taking flaxseed and CLM (n = 36), LDL-cholesterol concentrations were lowered by 8.5% ± 3.0% compared with baseline after 12 mo. This differed from the PL + CLM subgroup (n = 26), which increased by 3.0% ± 4.4% (P = 0.030) to a final concentration of 2.2 ± 0.1 mmol/L. CONCLUSIONS Milled flaxseed lowers total and LDL cholesterol in patients with PAD and has additional LDL-cholesterol-lowering capabilities when used in conjunction with CLMs. This trial was registered at clinicaltrials.gov as NCT00781950.
Biochemical and Biophysical Research Communications | 2003
Paramjit S. Tappia; Thane G. Maddaford; Cecilia Hurtado; Vincenzo Panagia; Grant N. Pierce
The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Thane G. Maddaford; Elena Dibrov; Cecilia Hurtado; Grant N. Pierce
The Na(+)/Ca(2+) exchanger (NCX) is proposed to be an important protein in the regulation of Ca(2+) movements in the heart. This Ca(2+) regulatory action is thought to modulate contractile activity in the heart under normal physiological conditions and may contribute to the Ca(2+) overload that occurs during ischemic reperfusion challenge. To evaluate these hypotheses, adult rat cardiomyocytes were exposed to an adenovirus that codes for short hairpin RNA (shRNA) targeting NCX gene expression through RNA interference. An adenovirus transcribing a short RNA with a scrambled nucleotide sequence was compared with the NCX-shRNA nucleotide sequence and used as a control. Freshly isolated rat cardiomyocytes were infected with virus for 48 h before examination. Cardiomyocytes maintained their characteristic morphological appearance during this short time period after isolation. NCX expression was inhibited by up to approximately 60% by the shRNA treatment as determined by Western blot analysis. The depletion in NCX protein was accompanied by a significant depression of NCX activity in shRNA-treated cells. Ca(2+) homeostasis was unaltered in the shRNA-treated cells upon electrical stimulation compared with control cells. However, when cardiomyocytes were exposed to a simulated ischemic solution, NCX-depleted cells were significantly protected from the rise in cytoplasmic Ca(2+) and damage that was detected in control cells during ischemia and reperfusion. Our data support the role for NCX in ischemic injury to the heart and demonstrate the usefulness of altering gene expression with an adenoviral-delivery system of shRNA in adult cardiomyocytes.
Journal of Cellular and Molecular Medicine | 2011
Randolph S. Faustino; Thane G. Maddaford; Grant N. Pierce
Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD‐98059, two MAP kinase antagonists as well as with SB‐202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N‐terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function.
Current Pharmaceutical Biotechnology | 2010
Tod A. Clark; Thane G. Maddaford; Paramjit S. Tappia; Clayton E. Heyliger; Pallab K. Ganguly; Grant N. Pierce
Diabetes mellitus is associated with abnormal cardiomyocyte Ca(2+) transients and contractile performance. We investigated the possibility that an alteration in inositol trisphosphate/phospholipase C (IP₃/PLC) signalling may be involved in this dysfunction. Phosphatidic acid stimulates cardiomyocyte contraction through an IP₃/PLC signaling cascade. We also tested a novel therapeutic intervention to assess its efficacy in reversing any potential defects. Diabetes was induced in Sprague-Dawley rats by streptozotocin treatment and maintained for an 8 week experimental period. Active cell shortening was significantly depressed in cardiomyocytes obtained from diabetic and insulin-treated diabetic rats in comparison to normal control animals. Perfusion of the cells with phosphatidic acid induced an increase in contraction of control rat cardiomyocytes whereas its effect was inhibitory in cells from streptozotocin-induced diabetic rats. Diabetic rats were also treated orally with vanadate administered in a black tea extract (T/V) for the 8 week period. T/V treatment resulted in a contractile response that was not different from cells of control animals. Furthermore, cardiomyocytes from T/V-treated animals exhibited significantly improved Ca(2+) transients in comparison to diabetic animals and exhibited a normalized response to phosphatidic acid perfusion. It is concluded that a T/V glycemic therapy is capable of preventing the defect in IP₃/PLC signaling that occurs in diabetes and can restore normal cardiac contractile function.
Brain Research | 2008
Pallab K. Ganguly; Thane G. Maddaford; Andrea L. Edel; Karmin O; John S. Smeda; Grant N. Pierce
BACKGROUND AND PURPOSE Increased plasma [homocysteine] is associated with stroke but its direct effects on the brain during a stroke are unknown. Since excitatory amino acids are important in inducing brain damage, we examined the effect of homocysteine on the release of various amino acids in the striatum of spontaneously hypertensive stroke-prone (SHSP) rats before and after a stroke. METHODS In vivo microdialysis was carried out in the striatum of anesthetized SHSP rats before and after signs of stroke. Animals were exposed to 20 and 200 muM homocysteine in the microdialysis solution and then the microdialysates were analyzed 30 min later for amino acid content. Brain cryosections were silver-stained to quantify infarcts in the non-ischemic and the damaged tissues in pre-stroke and post-stroke rats. RESULTS Both pre-stroke and post-stroke animals had similar levels of all amino acids in the striatum. Homocysteine did not alter amino acid release in rats prior to stroke but induced a significant increase in the release of all amino acids tested in the post-stroke rats. However, the increase was significantly greater with the excitatory amino acids glutamate and aspartate, and with tyrosine in post-stroke animals as compared to those in pre-stroke, normal animals. The mean pixel density of the gray matter of post-stroke animals was significantly decreased following homocysteine treatment indicating the presence of neurological damage. CONCLUSIONS Homocysteine-induced neurological damage in post-infarct SHSP rats was associated with a hypersecretion of excitatory amino acids. Patients with hyperhomocysteinemia may be at risk for augmented brain damage from an ischemic infarct due to a selective activation of neuronal excitatory amino acids.