Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thangarasu Silambarasan is active.

Publication


Featured researches published by Thangarasu Silambarasan.


European Journal of Pharmacology | 2012

Diosmin, a bioflavonoid reverses alterations in blood pressure, nitric oxide, lipid peroxides and antioxidant status in DOCA-salt induced hypertensive rats.

Thangarasu Silambarasan; Boobalan Raja

The present study was aimed to evaluate the antihypertensive effect of diosmin in deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats by weekly twice subcutaneous injection of DOCA (25 mg/kg body weight) and 1% NaCl in the drinking water for six consecutive weeks. The important pathological events that occurred in DOCA-salt treated rats were significant increase in systolic, diastolic blood pressure, sodium and chloride in serum and lipid peroxidation products (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) in plasma and tissues (liver, kidney, heart and aorta) and significant decrease in serum potassium, total nitrite and nitrate levels in plasma. The activities of hepatic aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and the levels of renal urea, uric acid, creatinine in serum, water intake, and organ weight (kidney and heart) were significantly increased in DOCA-salt hypertensive rats. DOCA-salt treated rats also showed a significant decrease in body weight, activities of superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of reduced glutathione, vitamin C and vitamin E in plasma and tissues. Treatment with diosmin (25, 50 and 100 mg/kg body weight) brings back all the above parameters to near normal level, in which 50 mg/kg body weight showed the highest effect than that of other two doses. Histopathology of heart and kidney also confirmed the protective effect of diosmin. Thus the experiment clearly showed that diosmin acts as an antihypertensive agent against DOCA-salt induced hypertension.


PLOS ONE | 2014

Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

Thangarasu Silambarasan; Jeganathan Manivannan; Mani Krishna Priya; Natarajan Suganya; Suvro Chatterjee; Boobalan Raja

Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the treatment of hypertensive heart disease by attenuating fibrosis and oxidative stress through its antioxidant potential.


European Journal of Pharmacology | 2014

Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion

Oomaidurai Senthamizhselvan; Jeganathan Manivannan; Thangarasu Silambarasan; Boobalan Raja

Reperfusion of ischemic tissue leads to the generation of oxygen derived free radicals which plays an important role in cellular damage. Objective of the current study is to evaluate the cardio-protective and antioxidant effect of diosmin on ischemia-reperfusion related cardiac dysfunction, oxidative stress and apoptosis. Diosmin (50 and 100 mg/kg body weight (bw)) was given every day to the rats orally throughout the experimental period. Ischemia/reperfusion protocol was carried out ex vivo using langendorff perfusion method and the cardiac functional recovery was assessed in terms of percentage rate pressure product. Coronary effluents of LDH and CK-MB activities, antioxidant enzyme activities, lipid peroxidation products, activity of TCA cycle enzymes were evaluated. Moreover, in vitro superoxide anion and hydroxyl radical scavenging potential of diosmin was also quantified. Finally, quantitative real-time PCR was used for assessing Bcl-2 mRNA expression in heart. Cardiac functional recovery was impaired after reperfusion compared with continuously perfused heart. It was significantly prevented by diosmin treatment. Impaired antioxidant enzyme activities and elevated lipid peroxidation products level were also significantly suppressed. The activity of TCA cycle enzymes was protected against reperfusion stress. Down regulated Bcl-2 was also significantly increased. This study concluded that diosmin pretreatment prevents all the impaired patterns including cardiac function, oxidative stress and apoptosis associated with reperfusion in control heart by its antioxidant role.


Biochemical and Biophysical Research Communications | 2015

Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress

Thangarasu Silambarasan; Jeganathan Manivannan; Mani Krishna Priya; Natarajan Suganya; Suvro Chatterjee; Boobalan Raja

The present study was designed to evaluate antioxidant and cardioprotective potential of sinapic acid (SA) against ischemia/reperfusion (I/R) injury. Cardiac functional recovery after I/R was evaluated by percentage rate pressure product (%RPP) and percentage coronary flow (%CF). Myocardial injury was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining and LDH enzyme leakage. Oxidative stress was estimated by lipid peroxidation level. eNOS protein expression in reperfused heart was assessed using Western blot method. Finally, in order to support the antioxidant effect of SA, in vitro protective potential of SA was assessed on H2O2-induced oxidative stress in H9c2 cardiomyoblast cells. The overall results demonstrated that I/R induced cardiac dysfunction, injury and oxidative stress was attenuated by SA treatment. Moreover, in vitro results also shown that, SA protects H9c2 cells from oxidative stress and modulates mitochondrial membrane permeability transition (MPT). In conclusion, coupled results from both in vivo and in vitro experiments have confirmed that SA with antioxidant role protects cardiac cells and its functions from I/R induced oxidative stress.


Molecular and Cellular Biochemistry | 2012

Molecular metabolic fingerprinting approach to investigate the effects of borneol on metabolic alterations in the liver of nitric oxide deficient hypertensive rats

Murugesan Saravanakumar; Jeganathan Manivannan; J. Sivasubramanian; Thangarasu Silambarasan; Elumalai Balamurugan; Boobalan Raja

Hypertension is one of the major risk factor that underlie a wide range of cardiovascular irregularities which causes functional and metabolic alterations in vascular system and major organs. Nitric oxide is the central regulator of the vascular system and its deficiency leads to increased blood pressure and metabolic alterations in liver. Fourier transform infrared spectroscopy (FTIR) is a vibrational spectroscopic technique that uses infrared radiation to vibrate molecular bonds with in the sample that absorbs it and different samples contain diverse configurations of molecular bonds. Both wavenumber and area of the vibrational spectra can be used to explore the qualitative and quantitative constituent of macromolecules. In this study, we intended to evaluate the protective role of borneol, a natural terpene on liver metabolism in a nitric oxide deficient model of hypertension through interpretation of FTIR spectral information. Results demonstrate that FTIR can successfully indicate the molecular changes that occur in all groups. The over all findings demonstrate that in nitric oxide deficient animal model of hypertension, the liver metabolic program is altered through increasing the structural modification in proteins and triglycerides, and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected by borneol in liver and showed its ability to exert a novel defensive action on hepatic metabolism.


European Journal of Pharmacology | 2016

Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase.

Thangarasu Silambarasan; Jeganathan Manivannan; Boobalan Raja; Suvro Chatterjee

The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40 mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5 kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations.


Environmental Toxicology and Pharmacology | 2014

Valproic acid prevents the deregulation of lipid metabolism and renal renin-angiotensin system in L-NAME induced nitric oxide deficient hypertensive rats.

Thiyagarajan Rajeshwari; Boobalan Raja; Jeganathan Manivannan; Thangarasu Silambarasan; Thanikkodi Dhanalakshmi

The present study was aimed to investigate the antihyperlipidemic and renoprotective potential of valproic acid against N(ω)-nitro-L arginine methyl ester hydrochloride (L-NAME) induced hypertension in male albino Wistar rats. In hypertensive rats, mean arterial pressure (MAP), kidney weight, levels of oxidative stress markers in tissues were increased. Dyslipidemia was also observed in hypertensive rats. Moreover, enzymatic and nonenzymatic antioxidant network also deregulated in tissues. Valproic acid (VPA) supplementation daily for four weeks brought back all the above parameters to near normal level and showed no toxicity which was established using serum hepatic marker enzyme activities and renal function markers. Moreover the up regulated expression of renin-angiotensin system (RAS) components were also attenuated by VPA treatment. All the above outcomes were confirmed by the histopathological examination. These results suggest that VPA has enough potential to attenuate hypertension, dyslipidemia and renal damage in nitric oxide deficiency induced hypertension.


RSC Advances | 2015

Diosgenin, a steroidal saponin, prevents hypertension, cardiac remodeling and oxidative stress in adenine induced chronic renal failure rats

Jeganathan Manivannan; Janakiraman Shanthakumar; Thangarasu Silambarasan; Elumalai Balamurugan; Boobalan Raja

Patients with chronic renal failure (CRF) are at a high risk of developing cardiovascular diseases. The aim of the present study was to evaluate the effect of diosgenin on blood pressure, cardiac remodeling, contractile function and gene expression program in the context of oxidative stress in CRF rats. CRF was induced in rats by feeding them with 0.75% adenine-containing diet, and diosgenin was given orally everyday at the dose of 10, 20 and 40 mg kg−1 body weight of animal. The effect of diosgenin on systolic blood pressure (SBP), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), angiotensin converting enzyme (ACE) activity and lipid peroxidation level in heart were evaluated. Cardiac function (dp/dt) and percentage rate pressure product (%RPP) recovery after ischemia/reperfusion (I/R) were evaluated by Langendorff isolated heart system, and gene expression levels were assessed by real-time PCR. Fibrotic remodeling of heart was assessed by histopathologic analyses. The outcome of this study demonstrated that a dose dependent treatment with diosgenin reduces hypertension in CRF animals, and a 40 mg kg−1 dosage exhibited more pronounced effect on the blood pressure. Diosgenin enhances the antioxidant level, attenuates ACE activity, lipid peroxidation level and cardiac fibrosis. Ventricular function and %RPP recovery after I/R were also improved by the diosgenin treatment. CRF induced expression of transforming growth factor-β (TGF-β) and β-myosin heavy chain (β-MHC) were also suppressed by diosgenin. Taken together, these results suggest that diosgenin have enough potential to attenuate cardiac remodeling by reducing blood pressure and oxidative stress in the heart of CRF rats.


RSC Advances | 2015

Systems pharmacology and molecular docking strategies prioritize natural molecules as cardioprotective agents

Jeganathan Manivannan; Thangarasu Silambarasan; Rajendran Kadarkarairaj; Boobalan Raja

Natural compounds can interact with multiple cellular target proteins and may be prioritized as drug leads. There is a need for prioritization of compounds that protect cardiovascular systems from pathological conditions. Here we prioritize morin, veratric acid, piperine, syringic acid, vanillic acid, diosgenin, diosmetin and sinapic acid that were already identified as cardioprotective molecules in our previous studies through multi-level data integration. In this study, initially we predict targets of the above-mentioned compounds by reverse pharmacophore (PharmMapper) and structural similarity based target-screening methods. We also explored the compound–target pathways (Biocarta and KEGG) and disease relationships. Further, we chose public microarray transcriptomic data from GEO to prioritize important pathogenic targets (heart failure, cardiac hypertrophy, vascular dysfunction and atherosclerosis), and we explored the interaction potential of the above compounds on the targets via blind docking (AutoDock Vina). Moreover, the multi target action of compounds was revealed by target information retrieved from large-scale text mining and organized databases (HIT and TCMID). The drug likeness profile and toxicity prediction was achieved based on Lipinskis rule and structural similarity search (ProTox). The observed results have demonstrated that the multi target potential and less toxic nature mean these molecules can be prioritized as lead compounds for cardiovascular diseases.


British Journal of Nutrition | 2015

Oral administration of veratric acid, a constituent of vegetables and fruits, prevents cardiovascular remodelling in hypertensive rats: a functional evaluation

Murugesan Saravanakumar; Boobalan Raja; Jeganathan Manivannan; Thangarasu Silambarasan; Pichavaram Prahalathan; Subramanian Kumar; Santosh Kumar Mishra

In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system. Hypertension was induced in male albino Wistar rats by oral administration of N ω -nitro-l-arginine methyl ester hydrochloride (l-NAME) (40 mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. l-NAME-treated rats showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies, respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Massons Trichrome staining and Van Giesons staining, respectively. In addition, l-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis. VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-associated cardiovascular remodelling.

Collaboration


Dive into the Thangarasu Silambarasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge