Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thanh Nguyen Le is active.

Publication


Featured researches published by Thanh Nguyen Le.


Bioorganic & Medicinal Chemistry | 2002

Molecular modeling of 3-arylisoquinoline antitumor agents active against A-549. A comparative molecular field analysis study

Won-Jea Cho; Eui Ki Kim; Il Yeong Park; Eun Young Jeong; Tae Sung Kim; Thanh Nguyen Le; Dae Duk Kim; Eung-Seok Lee

A series of 58 3-arylisoquinoline antitumor agents were investigated for defining the pharmacophore model using comparative molecular field analysis (CoMFA) program. The studied compounds related to bioisostere of benzophenanthridine alkaloid were synthesized and evaluated for antitumor cytotoxicity against human lung tumor cell (A 549). In order to perform the systematic molecular modeling study of these compounds, the conformational search was carried out based on the single X-ray crystallographic structure of 7,8-dimethoxy-3-phenylisoquinolin-(2H)-one (2). Interestingly, two types of structures having different dihedral angles between the isoquinoline ring and 3-aryl ring were found in the crystals. Therefore, CoMFA was performed two different, overlapping ways. The alignments of the structures were based on the common isoquinoline ring and 3-aryl ring. The 3-D-quantitative structure-activity relationship study resulted in significant cross-validated, conventional r(2) values equal to 0.715 and 0.927, respectively.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis, in vitro and in vivo evaluation of 3-arylisoquinolinamines as potent antitumor agents

Su Hui Yang; Hue Thi My Van; Thanh Nguyen Le; Daulat Bikram Khadka; Suk Hee Cho; Kyung-Tae Lee; Hwa-Jin Chung; Sang Kook Lee; Chang-Ho Ahn; Young Bok Lee; Won-Jea Cho

In the search for potent water-soluble 3-arylisoquinolines, several 3-arylisoquinolinamines were designed and synthesized. Various substituted 3-arylisoquinolinamines exhibited strong cytotoxic activity against eight different human cancer cell lines. In particular, C-6 or C-7 dimethylamino-substituted 3-arylisoquinolinamines displayed stronger potency than the lead compound 7a. Interestingly, compounds 7b and 7c showed more effective activity against paclitaxel-resistant HCT-15 human colorectal cancer cell lines when compared to the original cytotoxic cancer drug, paclitaxel. We analyzed the cell cycle dynamics by flow cytometry and found that treatment of human HCT-15 cells with 3-arylisoquinolinamine 7b blocked or delayed the progression of cells from G0/G1 phase into S phase, and induced cell death. Treatment with compound 7b also significantly inhibited the growth of tumors and enhanced tumor regression in a paclitaxel-resistant HCT-15 xenograft model.


PLOS ONE | 2013

Artemisinin Analogues as Potent Inhibitors of In Vitro Hepatitis C Virus Replication

Susan Obeid; Jo Alen; Van Hung Nguyen; Van Cuong Pham; Philip Meuleman; Christophe Pannecouque; Thanh Nguyen Le; Johan Neyts; Wim Dehaen; Jan Paeshuyse

We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules.


European Journal of Medicinal Chemistry | 2015

Substituted 2-arylquinazolinones: Design, synthesis, and evaluation of cytotoxicity and inhibition of topoisomerases.

Daulat Bikram Khadka; Giap Huu Tran; Somin Shin; Hang Thi Minh Nguyen; Hue Thi Cao; Chao Zhao; Yifeng Jin; Hue Thi My Van; Minh Van Chau; Youngjoo Kwon; Thanh Nguyen Le; Won-Jea Cho

A series of 2-arylquinazolinones with structural homology to known 3-arylisoquinolines were designed and synthesized in order to develop safe, effective, and selective cytotoxic agents targeting topoisomerases (topos). 2-Arylquinzolinones with various substitutions on the aromatic rings were obtained by thermal cyclodehydration/dehydrogenation on reacting anthranilamides and benzaldehydes. The compounds had superior topo I-inhibitory activities but were generally inactive against topo IIα. Among the 6-methyl-, 6-amino-, and 7-methylquinazolinones, 6-amino-substituted derivatives displayed potent cytotoxicity at submicromolar to nanomolar concentrations against human colorectal adenocarcinoma cells (HCT-15), human ductal breast epithelial tumor cells (T47D), and cervical cancer cells (HeLa). There was a good correlation between topo I inhibition and the cytotoxic effects of 6-aminoquinazolinones. Docking models demonstrated that topo I inhibition by these compounds is owing to intercalation and H-bond interactions with the DNA bases and amino acid residues at the enzymatic site.


Bioorganic & Medicinal Chemistry | 2011

Synthesis of benzo[3,4]azepino[1,2-b]isoquinolin-9-ones from 3-arylisoquinolines via ring closing metathesis and evaluation of topoisomerase I inhibitory activity, cytotoxicity and docking study

Hue Thi My Van; Daulat Bikram Khadka; Su Hui Yang; Thanh Nguyen Le; Suk Hee Cho; Chao Zhao; Ik-Soo Lee; Youngjoo Kwon; Kyung-Tae Lee; Yong-Chul Kim; Won-Jea Cho

Benzo[3,4]azepino[1,2-b]isoquinolinones were designed and developed as constraint forms of 3-arylisquinolines with an aim to inhibit topoisomerase I (topo I). Ring closing metathesis (RCM) of 3-arylisoquinolines with suitable diene moiety provided seven membered azepine rings of benzoazepinoisoquinolinones. Spectral analyses of these heterocyclic compounds demonstrated that the methylene protons of the azepine rings are nonequivalent. The shielding environment experienced by these geminal hydrogens differs unusually by 2.21ppm. As expected, benzoazepinoisoquinolinones displayed potent cytotoxicity. However, cytotoxic effects of the compounds were not related to topo I inhibition which is explained by non-planar conformation of the rigid compounds incapable of intercalating between DNA base pairs. In contrast, flexible 3-arylisoquinoline 8d attains active conformation at drug target site to exhibit topo I inhibition identical to cytotoxic alkaloid, camptothecin (CPT).


Bioorganic & Medicinal Chemistry | 2011

Design and synthesis of 4-amino-2-phenylquinazolines as novel topoisomerase I inhibitors with molecular modeling

Thanh Nguyen Le; Su Hui Yang; Daulat Bikram Khadka; Hue Thi My Van; Suk Hee Cho; Youngjoo Kwon; Eung-Seok Lee; Kyung-Tae Lee; Won-Jea Cho

4-Amino-2-phenylquinazolines 7 were designed as bioisosteres of 3-arylisoquinolinamines 6 that were energy minimized to provide stable conformers. Interestingly, the 2-phenyl ring of 4-amino-2-phenylquinazolines was parallel to the quinazoline ring and improved their DNA intercalation ability in the DNA-topo I complex. Among the synthesized 4-amino group-substituted analogs, 4-cyclohexylamino-2-phenylquinazoline 7h exhibited potent topo I inhibitory activity and strong cytotoxicity. Interestingly, consistency was observed between the cytotoxicities and topo I activities in these quinazoline analogs, suggesting that the target of 4-amino-2-phenylquinazolines is limited to topo I. Molecular docking studies were performed with the Surflex-Dock program to afford the ideal interaction mode of the compound into the binding site of the DNA-topo I complex in order to clarify the topo I activity of 7h.


European Journal of Medicinal Chemistry | 2015

Modification of 3-arylisoquinolines into 3,4-diarylisoquinolines and assessment of their cytotoxicity and topoisomerase inhibition

Daulat Bikram Khadka; Hyunjung Woo; Su Hui Yang; Chao Zhao; Yifeng Jin; Thanh Nguyen Le; Youngjoo Kwon; Won-Jea Cho

Inspired by the initial success of the monoarylisoquinolines and the quest to identify more potent and selective anticancer agents with topoisomerase (topo) inhibitory activity, series of diarylisoquinolines (3,4-diarylisoquinolones and 3,4-diarylisoquinolinamines) were designed and synthesized. Synthesis of these compounds primarily involved lithiated toluamide-benzonitrile cycloaddition, Suzuki coupling, and nucleophilic aromatic substitution reactions. Eight of the derivatives were selectively toxic against human ductal breast epithelial tumor cells (T47D), human prostate cancer cells (DU145), and human colorectal adenocarcinoma cells (HCT-15), but had no effect on normal human breast epithelial cells (MCF10A). The topo inhibitory activities of the diarylisoquinoline compounds were relatively dependent upon their chemical structure. 3,4-Diarylisoquinolones generally did not inhibit topo I and only showed moderate inhibition of topo II. In contrast, several 3,4-diarylisoquinolinamines showed superior topo I inhibitory activity. Isoquinolinamine derivatives had greater affinity for topo I than for topo II. Topo inhibition by 3,4-diarylisoquinolines was further supported by docking models showing intercalative and/or H-bond interactions between these compounds and the DNA/topo(s). An analysis of the correlation between the cytotoxicity and topo inhibition of these compounds indicated that the primary biological target of derivatives with potent cytotoxicity was topo, which in turn establishes diaryl-substituted isoquinolines as a novel class of potential anticancer drugs.


European Journal of Medicinal Chemistry | 2010

Development of 3-aryl-1-isoquinolinamines as potent antitumor agents based on CoMFA

Su Hui Yang; Hue Thi My Van; Thanh Nguyen Le; Daulat Bikram Khadka; Suk Hee Cho; Kyung Tae Lee; Eung-Seok Lee; Young Bok Lee; Chang Ho Ahn; Won-Jea Cho

Various substituted 3-aryl-1-isoquinolinamines were designed and synthesized based on the previously constructed CoMFA model. Most of the synthesized compounds showed excellent potency in eight different human tumor cell lines as expected. In order to find the exact cytotoxic mechanism of these 3-aryl-1-isoquinolinamines, we analyzed the cell cycle dynamics by flow cytometry and found that 3-aryl-1-isoquinolinamine 6k-treated HeLa cells were arrested in G2/M phase, which is related to apoptosis.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis and docking study of 5-amino substituted indeno[1,2-c]isoquinolines as novel topoisomerase I inhibitors.

Daulat Bikram Khadka; Quynh Manh Le; Su Hui Yang; Hue Thi My Van; Thanh Nguyen Le; Suk Hee Cho; Youngjoo Kwon; Kyung-Tae Lee; Eung-Seok Lee; Won-Jea Cho

Various 5-amino group-substituted indeno[1,2-c]isoquinolines 7a-f were synthesized based on the previous QSAR study as rigid structures of 3-arylisoquinolines. Amino group-substituted compounds, especially 5-piperazinyl indeno[1,2-c]isoquinoline 7f, displayed potent topoisomerase I inhibitory activity as well as cytotoxicities against five different tumor cell lines. A Surflex-Dock docking model of 7f was also studied.


Journal of Organic Chemistry | 2004

A versatile total synthesis of benzo[c]phenanthridine and protoberberine alkaloids using lithiated toluamide-benzonitrile cycloaddition.

Thanh Nguyen Le; Seong Gyoung Gang; Won-Jea Cho

Collaboration


Dive into the Thanh Nguyen Le's collaboration.

Top Co-Authors

Avatar

Won-Jea Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hue Thi My Van

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Su Hui Yang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suk Hee Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Chao Zhao

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Van Hung Nguyen

Vietnam Academy of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge