Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thanos Tzounopoulos is active.

Publication


Featured researches published by Thanos Tzounopoulos.


Nature Neuroscience | 2004

Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus

Thanos Tzounopoulos; Yuil Kim; Donata Oertel; Laurence O. Trussell

In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.


Neuron | 2007

Coactivation of Pre- and Postsynaptic Signaling Mechanisms Determines Cell-Specific Spike-Timing-Dependent Plasticity

Thanos Tzounopoulos; Maria E. Rubio; John E. Keen; Laurence O. Trussell

Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition

Jason W. Middleton; Taro Kiritani; Courtney Pedersen; Jeremy G. Turner; Gordon M. G. Shepherd; Thanos Tzounopoulos

Tinnitus has been associated with increased spontaneous and evoked activity, increased neural synchrony, and reorganization of tonotopic maps of auditory nuclei. However, the neurotransmitter systems mediating these changes are poorly understood. Here, we developed an in vitro assay that allows us to evaluate the roles of excitation and inhibition in determining the neural correlates of tinnitus. To measure the magnitude and spatial spread of evoked circuit activity, we used flavoprotein autofluorescence (FA) imaging, a metabolic indicator of neuronal activity. We measured FA responses after electrical stimulation of glutamatergic axons in slices containing the dorsal cochlear nucleus, an auditory brainstem nucleus hypothesized to be crucial in the triggering and modulation of tinnitus. FA imaging in dorsal cochlear nucleus brain slices from mice with behavioral evidence of tinnitus (tinnitus mice) revealed enhanced evoked FA response at the site of stimulation and enhanced spatial propagation of FA response to surrounding sites. Blockers of GABAergic inhibition enhanced FA response to a greater extent in control mice than in tinnitus mice. Blockers of excitation decreased FA response to a similar extent in tinnitus and control mice. These findings indicate that auditory circuits in mice with behavioral evidence of tinnitus respond to stimuli in a more robust and spatially distributed manner because of a decrease in GABAergic inhibition.


Neuron | 2009

Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

Thanos Tzounopoulos; Nina Kraus

Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus

Shuang Li; Veronica Choi; Thanos Tzounopoulos

Tinnitus, the perception of phantom sound, is often a debilitating condition that affects many millions of people. Little is known, however, about the molecules that participate in the induction of tinnitus. In brain slices containing the dorsal cochlear nucleus, we reveal a tinnitus-specific increase in the spontaneous firing rate of principal neurons (hyperactivity). This hyperactivity is observed only in noise-exposed mice that develop tinnitus and only in the dorsal cochlear nucleus regions that are sensitive to high frequency sounds. We show that a reduction in Kv7.2/3 channel activity is essential for tinnitus induction and for the tinnitus-specific hyperactivity. This reduction is due to a shift in the voltage dependence of Kv7 channel activation to more positive voltages. Our in vivo studies demonstrate that a pharmacological manipulation that shifts the voltage dependence of Kv7 to more negative voltages prevents the development of tinnitus. Together, our studies provide an important link between the biophysical properties of the Kv7 channel and the generation of tinnitus. Moreover, our findings point to previously unknown biological targets for designing therapeutic drugs that may prevent the development of tinnitus in humans.


The Journal of Neuroscience | 2011

Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling.

Yanjun Zhao; Thanos Tzounopoulos

Cholinergic neuromodulation controls long-term synaptic plasticity underlying memory, learning, and adaptive sensory processing. However, the mechanistic interaction of cholinergic, neuromodulatory inputs with signaling pathways underlying long-term potentiation (LTP) and long-term depression (LTD) remains poorly understood. Here, we show that physiological activation of muscarinic acetylcholine receptors (mAChRs) controls the size and sign of associative long-term synaptic plasticity via interaction with endocannabinoid signaling. Our findings indicate that synaptic or pharmacological activation of postsynaptic M1/M3 converts postsynaptic Hebbian LTP to presynaptic anti-Hebbian LTD in principal neurons of the dorsal cochlear nucleus (DCN). This conversion is also dependent on NMDA receptor (NMDAR) activation and rises in postsynaptic Ca2+. While NMDAR activation and Ca2+ elevation lead to LTP, when these events are coordinated with simultaneous activation of M1/M3 mAChRs, anti-Hebbian LTD is induced. Anti-Hebbian LTD is mediated by a postsynaptic G-protein-coupled receptor intracellular signaling cascade that activates phospholipase C and that leads to enhanced endocannabinoid signaling. Moreover, the interaction between postsynaptic M1/M3 mAChRs and endocannabinoid signaling is input specific, as it occurs only in the parallel fiber inputs, but not in the auditory nerve inputs innervating the same DCN principal neurons. Based on the extensive distribution of cholinergic and endocannabinoid signaling, we suggest that their interaction may provide a general mechanism for dynamic, context-dependent modulation of associative synaptic plasticity.


Journal of Neurophysiology | 2009

Distinct Functional and Anatomical Architecture of the Endocannabinoid System in the Auditory Brainstem

Yanjun Zhao; Maria E. Rubio; Thanos Tzounopoulos

Endocannabinoids (ECs) act as retrograde messengers that enable postsynaptic cells to regulate the strength of their synaptic inputs. Here, by using physiological and histological techniques, we showed that, unlike in other parts of the brain, excitatory inputs are more sensitive than inhibitory inputs to EC signaling in the dorsal cochlear nucleus (DCN), an auditory brainstem nucleus. The principal cells of the DCN, fusiform cells, integrate acoustic signals through nonplastic synapses located in the deep layer with multimodal sensory signals carried by plastic parallel fibers in the molecular layer. Parallel fibers contact fusiform cells and inhibitory interneurons, the cartwheel cells, which in turn inhibit fusiform cells. Postsynaptic depolarization or pairing of postsynaptic potentials (PSPs) with action potentials (APs) induced EC-mediated modulation of excitatory inputs but did not affect inhibitory inputs. Quantitative electron microscopical studies showed that glutamatergic terminals express more cannabinoid 1 receptors (CB1Rs) than glycinergic terminals. Fusiform and cartwheel cells express diacylglycerol lipase alpha and beta (DGLalpha/beta), the two enzymes involved in the generation of the EC, 2-arachidonoyl-glycerol (2-AG). DGLalpha and DGLbeta are found in the spines of cartwheel but not fusiform cells indicating that the synthesis of ECs is more distant from parallel fiber synapses in fusiform than cartwheel cells. The differential localization and density of DGLalpha/beta and CB1Rs leads to cell- and input-specific EC signaling that favors activity-dependent EC-mediated suppression at synapses between parallel fibers and cartwheel cell spines, thus leading to reduced feedforward inhibition in fusiform cells. We propose that EC signaling is a major modulator of the balance of excitation and inhibition in auditory circuits.


The Journal of Neuroscience | 2013

Synaptic Zn2+ Inhibits Neurotransmitter Release by Promoting Endocannabinoid Synthesis

Tamara Perez-Rosello; Charles T. Anderson; Francisco J. Schopfer; Yanjun Zhao; David Gilad; Sonia R. Salvatore; Bruce A. Freeman; Michal Hershfinkel; Elias Aizenman; Thanos Tzounopoulos

Although it is well established that many glutamatergic neurons sequester Zn2+ within their synaptic vesicles, the physiological significance of synaptic Zn2+ remains poorly understood. In experiments performed in a Zn2+-enriched auditory brainstem nucleus—the dorsal cochlear nucleus—we discovered that synaptic Zn2+ and GPR39, a putative metabotropic Zn2+-sensing receptor (mZnR), are necessary for triggering the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The postsynaptic production of 2-AG, in turn, inhibits presynaptic probability of neurotransmitter release, thus shaping synaptic strength and short-term synaptic plasticity. Zn2+-induced inhibition of transmitter release is absent in mutant mice that lack either vesicular Zn2+ or the mZnR. Moreover, mass spectrometry measurements of 2-AG levels reveal that Zn2+-mediated initiation of 2-AG synthesis is absent in mice lacking the mZnR. We reveal a previously unknown action of synaptic Zn2+: synaptic Zn2+ inhibits glutamate release by promoting 2-AG synthesis.


The Neuroscientist | 2003

Enhancing Synaptic Plasticity and Memory: A Role for Small-Conductance Ca2+-Activated K+ Channels

Thanos Tzounopoulos; Robert W. Stackman

Calcium-activated potassium (K+) channels are distributed throughout the central nervous system as well as many other peripheral tissues and comprise three distinct classes of K+ channels: small conductance (SK), intermediate conductance, and large conductance. This update focuses on SK channels. Increases in cytosolic calcium in response to depolarization activate SK channels. Activation of these channels decreases neuronal excitability. In this review, the authors discuss the role of SK channels in the induction of synaptic plasticity and their influence on learning and memory. A testable model that synthesizes the current literature is offered, suggesting that SK channels represent an important regulator of synaptic plasticity and memory.


The Journal of Neuroscience | 2015

Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and prevents the development of tinnitus.

Bopanna I. Kalappa; Heun Soh; Kevin M. Duignan; Takeru Furuya; Scott Edwards; Anastasios V. Tzingounis; Thanos Tzounopoulos

Voltage-gated Kv7 (KCNQ) channels are voltage-dependent potassium channels that are activated at resting membrane potentials and therefore provide a powerful brake on neuronal excitability. Genetic or experience-dependent reduction of KCNQ2/3 channel activity is linked with disorders that are characterized by neuronal hyperexcitability, such as epilepsy and tinnitus. Retigabine, a small molecule that activates KCNQ2–5 channels by shifting their voltage-dependent opening to more negative voltages, is an US Food and Drug Administration (FDA) approved anti-epileptic drug. However, recently identified side effects have limited its clinical use. As a result, the development of improved KCNQ2/3 channel activators is crucial for the treatment of hyperexcitability-related disorders. By incorporating a fluorine substituent in the 3-position of the tri-aminophenyl ring of retigabine, we synthesized a small-molecule activator (SF0034) with novel properties. Heterologous expression of KCNQ2/3 channels in HEK293T cells showed that SF0034 was five times more potent than retigabine at shifting the voltage dependence of KCNQ2/3 channels to more negative voltages. Moreover, unlike retigabine, SF0034 did not shift the voltage dependence of either KCNQ4 or KCNQ5 homomeric channels. Conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons showed that SF0034 requires the expression of KCNQ2/3 channels for reducing the excitability of CA1 hippocampal neurons. Behavioral studies demonstrated that SF0034 was a more potent and less toxic anticonvulsant than retigabine in rodents. Furthermore, SF0034 prevented the development of tinnitus in mice. We propose that SF0034 provides, not only a powerful tool for investigating ion channel properties, but, most importantly, it provides a clinical candidate for treating epilepsy and preventing tinnitus.

Collaboration


Dive into the Thanos Tzounopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanjun Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Daniel Y. Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ankur Joshi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Elias Aizenman

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge