Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thantrira Porntaveetus is active.

Publication


Featured researches published by Thantrira Porntaveetus.


PLOS ONE | 2008

Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development

Atsushi Ohazama; Eric B. Johnson; Masato S. Ota; Hong J. Choi; Thantrira Porntaveetus; Shelly Oommen; Nobuyuki Itoh; Kazuhiro Eto; Amel Gritli-Linde; Joachim Herz; Paul T. Sharpe

The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMPs and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.


Nature Genetics | 2012

Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate

Andrew D. Economou; Atsushi Ohazama; Thantrira Porntaveetus; Paul T. Sharpe; Shigeru Kondo; M. Albert Basson; Amel Gritli-Linde; Martyn T. Cobourne; Jeremy B. A. Green

We present direct evidence of an activator-inhibitor system in the generation of the regularly spaced transverse ridges of the palate. We show that new ridges, called rugae, that are marked by stripes of expression of Shh (encoding Sonic hedgehog), appear at two growth zones where the space between previously laid rugae increases. However, inter-rugal growth is not absolutely required: new stripes of Shh expression still appeared when growth was inhibited. Furthermore, when a ruga was excised, new Shh expression appeared not at the cut edge but as bifurcating stripes branching from the neighboring stripe of Shh expression, diagnostic of a Turing-type reaction-diffusion mechanism. Genetic and inhibitor experiments identified fibroblast growth factor (FGF) and Shh as components of an activator-inhibitor pair in this system. These findings demonstrate a reaction-diffusion mechanism that is likely to be widely relevant in vertebrate development.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition.

Atsushi Ohazama; James Blackburn; Thantrira Porntaveetus; Masato S. Ota; Hong Y. Choi; Eric B. Johnson; Philip Myers; Shelly Oommen; Kazuhiro Eto; John A. Kessler; Takashi Kondo; Gareth J. Fraser; J. Todd Streelman; Ulyses F. J. Pardiñas; Abigail S. Tucker; Pablo E. Ortiz; Cyril Charles; Laurent Viriot; Joachim Herz; Paul T. Sharpe

Changes in tooth shape have played a major role in vertebrate evolution with modification of dentition allowing an organism to adapt to new feeding strategies. The current view is that molar teeth evolved from simple conical teeth, similar to canines, by progressive addition of extra “cones” to form progressively complex multicuspid crowns. Mammalian incisors, however, are neither conical nor multicuspid, and their evolution is unclear. We show that hypomorphic mutation of a cell surface receptor, Lrp4, which modulates multiple signaling pathways, produces incisors with grooved enamel surfaces that exhibit the same molecular characteristics as the tips of molar cusps. Mice with a null mutation of Lrp4 develop extra cusps on molars and have incisors that exhibit clear molar-like cusp and root morphologies. Molecular analysis identifies misregulation of Shh and Bmp signaling in the mutant incisors and suggests an uncoupling of the processes of tooth shape determination and morphogenesis. Incisors thus possess a developmentally suppressed, cuspid crown-like morphogenesis program similar to that in molars that is revealed by loss of Lrp4 activity. Several mammalian species naturally possess multicuspid incisors, suggesting that mammals have the capacity to form multicuspid teeth regardless of location in the oral jaw. Localized loss of enamel may thus have been an intermediary step in the evolution of cusps, both of which use Lrp4-mediated signaling.


Journal of Anatomy | 2011

Expression of fibroblast growth factors (Fgfs) in murine tooth development

Thantrira Porntaveetus; Yoko Otsuka-Tanaka; M. Albert Basson; Anne M. Moon; Paul T. Sharpe; Atsushi Ohazama

Fgf signalling is known to play critical roles in tooth development. Twenty‐two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11–Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo‐spatial expression in murine tooth development. We also analysed teeth in Fgf15−/− and Fgf15−/−;Fgf8+/− mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy.


Human Molecular Genetics | 2013

Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2)

Roman H. Khonsari; Atsushi Ohazama; Ramin Raouf; Maiko Kawasaki; Katsushige Kawasaki; Thantrira Porntaveetus; Sarah Ghafoor; Peter Hammond; Michael Suttie; Guillaume A. Odri; Richard Sandford; John N. Wood; Paul T. Sharpe

Polycystin 2 (Pkd2), which belongs to the transient receptor potential family, plays a critical role in development. Pkd2 is mainly localized in the primary cilia, which also function as mechanoreceptors in many cells that influence multiple biological processes including Ca(2+) influx, chemical activity and signalling pathways. Mutations in many cilia proteins result in craniofacial abnormalities. Orofacial tissues constantly receive mechanical forces and are known to develop and grow through intricate signalling pathways. Here we investigate the role of Pkd2, whose role remains unclear in craniofacial development and growth. In order to determine the role of Pkd2 in craniofacial development, we located expression in craniofacial tissues and analysed mice with conditional deletion of Pkd2 in neural crest-derived cells, using Wnt1Cre mice. Pkd2 mutants showed many signs of mechanical trauma such as fractured molar roots, distorted incisors, alveolar bone loss and compressed temporomandibular joints, in addition to abnormal skull shapes. Significantly, mutants showed no indication of any of these phenotypes at embryonic stages when heads perceive no significant mechanical stress in utero. The results suggest that Pkd2 is likely to play a critical role in craniofacial growth as a mechanoreceptor. Pkd2 is also identified as one of the genes responsible for autosomal dominant polycystic kidney disease (ADPKD). Since facial anomalies have never been identified in ADPKD patients, we carried out three-dimensional photography of patient faces and analysed these using dense surface modelling. This analysis revealed specific characteristics of ADPKD patient faces, some of which correlated with those of the mutant mice.


American Journal of Medical Genetics Part A | 2010

Lrp4: A Novel Modulator of Extracellular Signaling in Craniofacial Organogenesis

Atsushi Ohazama; Thantrira Porntaveetus; Masato S. Ota; Joachim Herz; Paul T. Sharpe

The low‐density lipoprotein (LDL) receptor family is a large evolutionarily conserved group of transmembrane proteins. It has been shown that LDL receptor family members can also function as direct signal transducers or modulators for a broad range of cellular signaling pathways. We have identified a novel mode of signaling pathway integration/coordination that occurs outside cells during development that involves an LDL receptor family member. Physical interaction between an extracellular protein (Wise) that binds BMP ligands and an Lrp receptor (Lrp4) that modulates Wnt signaling, acts to link these two pathways. Mutations in either Wise or Lrp4 in mice produce multiple, but identical abnormalities in tooth development that are linked to alterations in BMP and Wnt signaling. Teeth, in common with many other organs, develop by a series of epithelial–mesenchymal interactions, orchestrated by multiple cell signaling pathways. In tooth development, Lrp4 is expressed exclusively in epithelial cells and Wise mainly in mesenchymal cells. Our hypothesis, based on the mutant phenotypes, cell signaling activity changes and biochemical interactions between Wise and Lrp4 proteins, is that Wise and Lrp4 together act as an extracellular mechanism of coordinating BMP and Wnt signaling activities in epithelial–mesenchymal cell communication during development.


American Journal of Medical Genetics Part A | 2011

The smallest teeth in the world are caused by mutations in the PCNT gene

Piranit Nik Kantaputra; Pranoot Tanpaiboon; Thantrira Porntaveetus; Atsushi Ohazama; Paul T. Sharpe; Anita Rauch; Atiwat Hussadaloy; Christian Thiel

We report a follow up study on two MOPD II Thai families with severe dental anomalies and hypoplastic alveolar bone. Striking dental anomalies comprise severe microdontia, opalescent and abnormally shaped teeth, and rootless molars. As a result of severe hypoplastic alveolar bone, most permanent teeth have been lost. Mutation analysis of PCNT revealed 2 novel mutations (p.Lys3154del and p.Glu1154X) and a recurrent mutation (p.Pro1923X). Teeth of the patient who carried a homozygous novel mutation of p.Glu1154X are probably the smallest ever reported. The sizes of the mandibular permanent incisors and all premolars were approximately 2‐2.5 mm, mesiodistally. All previously reported, PCNT mutations have been described to cause premature truncation of the pericentrin protein. p.Lys3154del mutation was unique as it was pathogenic as a result of missing only a single amino acid. In situ hybridization of Pcnt shows its expression in the epithelium and mesenchyme during early stages of rodent tooth development. It is evident that PCNT has crucial role in tooth development. The permanent dentition is more severely affected than the one. This implies that PCNT appears to have more role in the development of the permanent dentition. As pericentrin is a critical centrosomal protein, the dental phenotype found in MOPD II patients is postulated to be the consequence of loss of microtubule integrity which leads to defective centrosome function.


European Journal of Orthodontics | 2012

Wnt signaling in the murine diastema

Thantrira Porntaveetus; Atsushi Ohazama; Hong Y. Choi; Joachim Herz; Paul T. Sharpe

The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors.


Gene Expression Patterns | 2010

Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse

Thantrira Porntaveetus; Shelly Oommen; Paul T. Sharpe; Atsushi Ohazama

Fgf signalling plays critical roles in the development of many ectodermal organs. Palatal rugae are ectodermal corrugated structures of the hard palate and in common with other ectodermal appendages, their development is initiated as epithelial thickenings that form placodes as the underlying mesenchymal cells condense. The placode regions then bulge towards to oral cavity to form an overall corrugated appearance. We carried out comparative in situ hybridization analysis of 18 Fgf ligands (Fgf1-Fgf10, Fgf15-Fgf18, Fgf20-Fgf23), four Fgf receptors (Fgfr1-Fgfr4) and four other Fgf signalling related molecules (Spry1, Spry2, Spry4 and Etv5) during murine palatal rugae development. Fgfr1 and Etv5 showed restricted expression in the interplacode epithelium whereas Fgf18 expression was localized to mesenchyme underneath the interplacode epithelium. The expression of Fgf9 was restricted to epithelial ruga placodes whereas Spry4 expression was observed in mesenchyme underneath the placodes. The localized expression of Fgf2, Fgf8, Fgf16, Fgfr4 and Spry1 were found in bulge mesenchyme. Fgf3, Fgf6, Fgfr2 and Spry2 showed expression in the entire epithelium whereas Fgf10 was expressed throughout the mesenchyme. Fgf signalling thus shows dynamic temporo-spatial expression in murine palatal rugae development.


Developmental Dynamics | 2014

R-spondins/Lgrs expression in tooth development.

Maiko Kawasaki; Thantrira Porntaveetus; Katsushige Kawasaki; Shelly Oommen; Yoko Otsuka-Tanaka; Mitsue Hishinuma; Takato Nomoto; Takeyasu Maeda; Keiyo Takubo; Toshio Suda; Paul T. Sharpe; Atsushi Ohazama

Background: Tooth development is highly regulated in mammals and it is regulated by networks of signaling pathways (e. g. Tnf, Wnt, Shh, Fgf and Bmp) whose activities are controlled by the balance between ligands, activators, inhibitors and receptors. The members of the R‐spondin family are known as activators of Wnt signaling, and Lgr4, Lgr5, and Lgr6 have been identified as receptors for R‐spondins. The role of R‐spondin/Lgr signaling in tooth development, however, remains unclear. Results: We first carried out comparative in situ hybridization analysis of R‐spondins and Lgrs, and identified their dynamic spatio‐temporal expression in murine odontogenesis. R‐spondin2 expression was found both in tooth germs and the tooth‐less region, the diastema. We further examined tooth development in R‐spondin2 mutant mice, and although molars and incisors exhibited no significant abnormalities, supernumerary teeth were observed in the diastema. Conclusions: R‐spondin/Lgr signaling is thus involved in tooth development. Developmental Dynamics 243:844–851, 2014.

Collaboration


Dive into the Thantrira Porntaveetus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Herz

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge