Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tharini Sivasubramaniyam is active.

Publication


Featured researches published by Tharini Sivasubramaniyam.


Nature Communications | 2015

DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice

Sally Yu Shi; Shun-Yan Lu; Tharini Sivasubramaniyam; Xavier S. Revelo; Erica P. Cai; Cynthia T. Luk; Stephanie A. Schroer; Prital Patel; Raymond H. Kim; Eric Bombardier; Joe Quadrilatero; A. Russell Tupling; Tak W. Mak; Daniel A. Winer; Minna Woo

Reactive oxygen species (ROS) have been linked to a wide variety of pathologies, including obesity and diabetes, but ROS also act as endogenous signalling molecules, regulating numerous biological processes. DJ-1 is one of the most evolutionarily conserved proteins across species, and mutations in DJ-1 have been linked to some cases of Parkinsons disease. Here we show that DJ-1 maintains cellular metabolic homeostasis via modulating ROS levels in murine skeletal muscles, revealing a role of DJ-1 in maintaining efficient fuel utilization. We demonstrate that, in the absence of DJ-1, ROS uncouple mitochondrial respiration and activate AMP-activated protein kinase, which triggers Warburg-like metabolic reprogramming in muscle cells. Accordingly, DJ-1 knockout mice exhibit higher energy expenditure and are protected from obesity, insulin resistance and diabetes in the setting of fuel surplus. Our data suggest that promoting mitochondrial uncoupling may be a potential strategy for the treatment of obesity-associated metabolic disorders.


Diabetologia | 2016

JAK2 promotes brown adipose tissue function and is required for diet- and cold-induced thermogenesis in mice

Sally Yu Shi; Wei Zhang; Cynthia T. Luk; Tharini Sivasubramaniyam; Jara J. Brunt; Stephanie A. Schroer; Harsh R. Desai; Alexandra Majerski; Minna Woo

Aims/hypothesisNon-shivering thermogenesis in adipose tissue can be activated by excessive energy intake or following cold exposure. The molecular mechanisms regulating this activation have not been fully elucidated. The Janus kinase (JAK) – signal transducer and activator of transcription (STAT) pathway mediates the signal transduction of numerous hormones and growth factors that regulate adipose tissue development and function, and may play a role in adaptive thermogenesis.MethodsWe analysed mRNA and protein levels of uncoupling protein 1 (UCP1) and JAK2 in different adipose depots in response to metabolic and thermal stress. The in vivo role of JAK2 in adaptive thermogenesis was examined using mice with adipocyte-specific Jak2 deficiency (A-Jak2 KO).ResultsWe show in murine brown adipose tissue (BAT) that JAK2 is upregulated together with UCP1 in response to high-fat diet (HFD) feeding and cold exposure. In contrast to white adipose tissue, where JAK2 was dispensable for UCP1 induction, we identified an essential role for BAT JAK2 in diet- and cold-induced thermogenesis via mediating the thermogenic response to β-adrenergic stimulation. Accordingly, A-Jak2 KO mice were unable to upregulate BAT UCP1 following a HFD or after cold exposure. Therefore, A-Jak2 KO mice were cold intolerant and susceptible to HFD-induced obesity and diabetes.Conclusions/interpretationTaken together, our results suggest that JAK2 plays a critical role in BAT function and adaptive thermogenesis. Targeting the JAK–STAT pathway may be a novel therapeutic approach for the treatment of obesity and related metabolic disorders.


Endocrinology | 2016

Aberrant TGFβ Signaling Contributes to Altered Trophoblast Differentiation in Preeclampsia.

Jing Xu; Tharini Sivasubramaniyam; Yoav Yinon; Andrea Tagliaferro; Jocelyn Ray; Ori Nevo; Martin Post; Isabella Caniggia

TGFβ has been implicated in preeclampsia, but its intracellular signaling via phosphorylated mothers against decapentaplegic (SMADs) and SMAD-independent proteins in the placenta remains elusive. Here we show that TGFβ receptor-regulated SMAD2 was activated (Ser(465/467) phosphorylation) in syncytiotrophoblast and proliferating extravillous trophoblast cells of first-trimester placenta, whereas inhibitory SMAD7 located primarily to cytotrophoblast cells. SMAD2 phosphorylation decreased with advancing gestation, whereas SMAD7 expression increased and shifted to syncytiotrophoblasts toward term. Additionally, we found that the TGFβ SMAD-independent signaling via partitioning defective protein 6 (PARD6)/Smad ubiquitylation regulatory factor was activated at approximately 10-12 weeks of gestation in cytotrophoblast and extravillous trophoblast cells comprising the anchoring column. Placentae from early-onset, but not late-onset, preeclampsia exhibited elevated SMAD2 phosphorylation and SMAD7 levels. Whereas PARD6 expression increased and SMURF1 levels decreased in preeclamptic placentae, their association increased. SMAD2 phosphorylation by TGFβ in villous explants and BeWo cells resulted in a reduction of Glial cell missing-1 (GCM1) and fusogenic protein syncytin-1 while increasing cell cycle regulators cyclin E-1 (CCNE1) and cyclin-dependent kinase 4. SMAD7 abrogated the proliferative effects of TGFβ. CCNE1 levels were increased in preeclamptic placentae, whereas GCM1 was markedly reduced. In addition, TGFβ treatment increased the association of PARD6 and SMURF1 and down-regulated Ras homolog gene family, member A (RHOA) GTPase in JEG3 cells. In a wound assay, TGFβ treatment increased the association of PARD6 and SMURF1 and triggered JEG3 cell migration through increased cellular protrusions. Taken together, our data indicate that TGFβ signaling via both SMAD2/7 and PARD6/SMURF1 pathways plays a role in trophoblast growth and differentiation. Altered SMAD regulation of GCM1 and CCNE1 and aberrant expression/activation of PARD6/SMURF1 may contribute to the pathogenesis of preeclampsia by affecting cellular pathways associated with this disorder.


Endocrinology | 2013

Where Polarity Meets Fusion: Role of Par6 in Trophoblast Differentiation during Placental Development and Preeclampsia

Tharini Sivasubramaniyam; Julia Garcia; Andrea Tagliaferro; Megan Melland-Smith; Sarah Chauvin; Martin Post; Tullia Todros; Isabella Caniggia

Trophoblast cell fusion is a prerequisite for proper human placental development. Herein we examined the contribution of Par6 (Partitioning defective protein 6), a key regulator of cell polarity, to trophoblast cell fusion in human placental development. During early placentation, Par6 localized to nuclei of cytotrophoblast cells but with advancing gestation Par6 shifted its localization to the cytoplasm and apical brush border of the syncytium. Exposure of primary isolated trophoblasts to 3% O(2) resulted in elevated Par6 expression, maintenance of tight junction marker ZO-1 at cell boundaries, and decreased fusogenic syncytin 1 expression compared with cells cultured at 20% O(2). Treatment of choriocarcinoma BeWo cells with forskolin, a known inducer of fusion, increased syncytin 1 expression but decreased that of Par6 and ZO-1. Par6 overexpression in the presence of forskolin maintained ZO-1 at cell boundaries while decreasing syncytin 1 levels. In contrast, silencing of Par6 disrupted ZO-1 localization at cell boundaries and altered the expression and distribution of acetylated α-tubulin. Par6 expression was elevated in preeclamptic placentas relative to normotensive preterm controls and Par6 located to trophoblast cells expressing ZO-1. Together, our data indicate that Par6 negatively regulates trophoblast fusion via its roles on tight junctions and cytoskeleton dynamics and provide novel insight into the contribution of this polarity marker in altered trophoblast cell fusion typical of preeclampsia.


Nature Communications | 2017

FAK signalling controls insulin sensitivity through regulation of adipocyte survival

Cynthia T. Luk; Sally Yu Shi; Erica P. Cai; Tharini Sivasubramaniyam; Mansa Krishnamurthy; Jara J. Brunt; Stephanie A. Schroer; Daniel A. Winer; Minna Woo

Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess.


Scientific Reports | 2017

Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation

Harsh R. Desai; Tharini Sivasubramaniyam; Xavier S. Revelo; Stephanie A. Schroer; Cynthia T. Luk; Prashanth R. Rikkala; Adam H. Metherel; David W. Dodington; Yoo Jin Park; Min Jeong Kim; Joshua A. Rapps; Rickvinder Besla; Clinton S. Robbins; Kay Uwe Wagner; Richard P. Bazinet; Daniel A. Winer; Minna Woo

During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2−/−) mice gained less body weight compared to wildtype littermate control (M-JAK2+/+) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2−/− mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2−/− mice. Peritoneal macrophages from M-JAK2−/− mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.


Journal of Biological Chemistry | 2017

Janus kinase 2 (JAK2) Dissociates Hepatosteatosis from Hepatocellular Carcinoma in Mice

Sally Yu Shi; Stephanie A. Schroer; Cynthia T. Luk; Min Jeong Kim; David W. Dodington; Lauren Lin; Tharini Sivasubramaniyam; Erica P. Cai; Shun-Yan Lu; Kay-Uwe Wagner; Richard P. Bazinet; Minna Woo

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Diabetologia | 2014

Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action

Erica P. Cai; Cynthia T. Luk; Xiaohong Wu; Stephanie A. Schroer; Sally Yu Shi; Tharini Sivasubramaniyam; Jara J. Brunt; Eldad Zacksenhaus; Minna Woo

ABSTRACTAims/hypothesisDiabetes mellitus is characterised by beta cell loss and alpha cell expansion. Analogues of glucagon-like peptide-1 (GLP-1) are used therapeutically to antagonise these processes; thus, we hypothesised that the related cell cycle regulators retinoblastoma protein (Rb) and p107 were involved in GLP-1 action.MethodsWe used small interfering RNA and adenoviruses to manipulate Rb and p107 expression in insulinoma and alpha-TC cell lines. In vivo we examined pancreas-specific Rb knockout, whole-body p107 knockout and Rb/p107 double-knockout mice.ResultsRb, but not p107, was downregulated in response to the GLP-1 analogue, exendin-4, in both alpha and beta cells. Intriguingly, this resulted in opposite outcomes of cell cycle arrest in alpha cells but proliferation in beta cells. Overexpression of Rb in alpha and beta cells abolished or attenuated the effects of exendin-4 supporting the important role of Rb in GLP-1 modulation of cell cycling. Similarly, in vivo, Rb, but not p107, deficiency was required for the beta cell proliferative response to exendin-4. Consistent with this finding, Rb, but not p107, was suppressed in islets from humans with diabetes, suggesting the importance of Rb regulation for the compensatory proliferation that occurs under insulin resistant conditions. Finally, while p107 alone did not have an essential role in islet homeostasis, when combined with Rb deletion, its absence potentiated apoptosis of both alpha and beta cells resulting in glucose intolerance and diminished islet mass with ageing.Conclusions/interpretationWe found a central role of Rb in the dual effects of GLP-1 in alpha and beta cells. Our findings highlight unique contributions of individual Rb family members to islet cell proliferation and survival.


JCI insight | 2017

Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

Tharini Sivasubramaniyam; Stephanie A. Schroer; Angela Li; Cynthia T. Luk; Sally Yu Shi; Rickvinder Besla; David W. Dodington; Adam H. Metherel; Alex P. Kitson; Jara J. Brunt; Joshua Lopes; Kay-Uwe Wagner; Richard P. Bazinet; Michelle P. Bendeck; Clinton S. Robbins; Minna Woo

Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.


Islets | 2014

Overexpression of HIF-2α in pancreatic β cells does not alter glucose homeostasis.

Jara J. Brunt; Sally Yu Shi; Stephanie A. Schroer; Tharini Sivasubramaniyam; Erica P. Cai; Minna Woo

Both type 1 and type 2 diabetes are associated with insufficient functional β-cell mass. Understanding intracellular signaling pathways associated with this decline is important in broadening our understanding of the disease and potential therapeutic strategies. The hypoxia inducible factor pathway (HIF) plays a critical role in cellular adaptation to hypoxic conditions. Activation of this pathway increases expression of numerous genes involved in multiple cellular processes and has been shown to impact the regulation of β-cell function. Previously, deletion of HIF-1α or HIF-1β in pancreatic β-cells, as well as constitutive activation of the HIF pathway in β-cells, was shown to result in glucose intolerance and impaired insulin secretion. The objective of this study was to delineate roles of HIF-2α overexpression in pancreatic β-cells in vivo. We overexpressed HIF-2α in pancreatic β-cells by employing the Cre-loxP system driven by the Pdx1 promoter to delete a stop codon. Our study revealed that pancreatic HIF-2α overexpression does not result in significant differences in glucose tolerance, insulin sensitivity or β-cell area compared to wild-type littermates under basal conditions or after high fat diet. Together, our study shows excess HIF-2α in the pancreatic β-cells does not play a significant role in β-cell function and glucose homeostasis.

Collaboration


Dive into the Tharini Sivasubramaniyam's collaboration.

Top Co-Authors

Avatar

Minna Woo

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Winer

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge