Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thau Ho is active.

Publication


Featured researches published by Thau Ho.


Nature Chemical Biology | 2015

A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models.

Elayne Chan-Penebre; Kristy G Kuplast; Christina R. Majer; P. Ann Boriack-Sjodin; Tim J. Wigle; L. Danielle Johnston; Nathalie Rioux; Michael John Munchhof; Lei Jin; Suzanne L. Jacques; Kip A West; Trupti Lingaraj; Kimberly Stickland; Scott Ribich; Alejandra Raimondi; Margaret Porter Scott; Nigel J. Waters; Roy M. Pollock; Jesse J. Smith; Olena Barbash; Melissa B. Pappalardi; Thau Ho; Kelvin Nurse; Khyati P Oza; Kathleen T Gallagher; Ryan G. Kruger; Mikel P. Moyer; Robert A. Copeland; Richard Chesworth; Kenneth W. Duncan

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Chemistry & Biology | 2011

Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

Jingsong Yang; Nino Campobasso; Mangatt P. Biju; Kelly E. Fisher; Xiao-Qing Pan; Josh Cottom; Sarah Galbraith; Thau Ho; Hong Zhang; Xuan Hong; Paris Ward; Glenn A. Hofmann; Brett Siegfried; Francesca Zappacosta; Yoshiaki Washio; Ping Cao; Junya Qu; Sophie M. Bertrand; Da-Yuan Wang; Martha S. Head; Hu Li; Sheri L. Moores; Zhihong Lai; Kyung Johanson; George Burton; Connie L. Erickson-Miller; Graham L. Simpson; Peter J. Tummino; Robert A. Copeland; Allen Oliff

c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.


Archives of Biochemistry and Biophysics | 2010

C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site

Jianhong Ma; John D. Martin; Yu Xue; Leng A. Lor; Karen M. Kennedy-Wilson; Robert H. Sinnamon; Thau Ho; Guofeng Zhang; Benjamin J. Schwartz; Peter J. Tummino; Zhihong Lai

USP7, also known as the hepes simplex virus associated ubiquitin-specific protease (HAUSP), deubiquitinates both mdm2 and p53, and plays an important role in regulating the level and activity of p53. Here, we report that deletion of the TRAF-like domain at the N-terminus of USP7, previously reported to contain the mdm2/p53 binding site, has no effect on USP7 mediated deubiquitination of Ub(n)-mdm2 and Ub(n)-p53. Amino acids 208-1102 were identified to be the minimal length of USP7 that retains proteolytic activity, similar to full length enzyme, towards not only a truncated model substrate Ub-AFC, but also Ub(n)-mdm2, Ub(n)-p53. In contrast, the catalytic domain of USP7 (amino acids 208-560) has 50-700 fold less proteolytic activity towards different substrates. Moreover, inhibition of the catalytic domain of USP7 by Ubal is also different from the full length or TRAF-like domain deleted proteins. Using glutathione pull-down methods, we demonstrate that the C-terminal domain of USP7 contains additional binding sites, a.a. 801-1050 and a.a. 880-1050 for mdm2 and p53, respectively. The additional USP7 binding site on mdm2 is mapped to be the C-terminal RING finger domain (a.a. 425-491). We propose that the C-terminal domain of USP7 is responsible for maintaining the active conformation for catalysis and inhibitor binding, and contains the prime side of the proteolytic active site.


Protein Science | 2007

Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP-PNP

Baoguang Zhao; Ruth Lehr; Angela Smallwood; Thau Ho; Kathleen Maley; Tanya Randall; Martha S. Head; Kristin K. Koretke; Christine G. Schnackenberg

Serum and glucocorticoid‐regulated kinase 1 (SGK1) is a serine/threonine protein kinase of the AGC family which participates in the control of epithelial ion transport and is implicated in proliferation and apoptosis. We report here the 1.9 Å crystal structure of the catalytic domain of inactive human SGK1 in complex with AMP–PNP. SGK1 exists as a dimer formed by two intermolecular disulfide bonds between Cys258 in the activation loop and Cys193. Although most of the SGK1 structure closely resembles the common protein kinase fold, the structure around the active site is unique when compared to most protein kinases. The αC helix is not present in this inactive form of SGK1 crystal structure; instead, the segment corresponding to the C helix forms a β‐strand that is stabilized by the N‐terminal segment of the activation loop through a short antiparallel β‐sheet. Since the differences from other kinases occur around the ATP binding site, this structure can provide valuable insight into the design of selective and highly potent ATP‐competitive inhibitors of SGK1 kinase.


Biochemical Journal | 2011

Biochemical characterization of human HIF hydroxylases using HIF protein substrates that contain all three hydroxylation sites

Melissa B. Pappalardi; Dean E. McNulty; John D. Martin; Kelly E. Fisher; Yong Jiang; Matthew C. Burns; Huizhen Zhao; Thau Ho; Sharon Sweitzer; Benjamin Schwartz; Roland S. Annan; Robert A. Copeland; Peter J. Tummino; Lusong Luo

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


Journal of Biomolecular Screening | 2007

A High-Throughput Screen Measuring Ubiquitination of p53 by Human mdm2

Monique F. Murray; Anthony J. Jurewicz; John D. Martin; Thau Ho; Hong Zhang; Kyung Johanson; Robert B. Kirkpatrick; Jianhong Ma; Leng A. Lor; Sara H. Thrall; Benjamin J. Schwartz

Tumor suppressor p53 is typically maintained at low levels in normal cells. In response to cellular stresses, such as DNA damage, p53 is stabilized and can stimulate responses leading to cell cycle arrest or apoptosis. Corresponding to its central role in preventing propagation of damaged cells, mutation or deletion of p53 is found in nearly 50% of all human tumors. Mdm2 (mouse-d-minute 2) and its human ortholog (hmdm2 or hdm2) catalyze the ubiquitination of p53, targeting it for degradation via the proteosome. Thus, the activity of mdm2 is inversely correlated with p53 levels. Based on this, inhibition of human mdm2 activity by a small-molecule therapeutic will lead to net stabilization of p53 and be the basis for development of a novel cancer therapeutic. Previous high-throughput screening assays of mdm2 measured the autoubiquitination activity of mdm2, which occurs in the absence of an acceptor substrate such as p53. The major drawback to this approach is that inhibitors of mdm2 autoubiquitination may lead to a net stabilization of mdm2 and thus have the opposite effect of inhibitors that interfere with p53 ubiquitination. The authors describe the development, validation, and execution of a high-throughput screening measuring the ubiquitination of p53 by mdm2, with p53 labeled with europium and the other substrate (Ub-UbcH5b) labeled with a Cy5 on the ubiquitin. After confirming that known inhibitors are detected with this assay, it was successfully automated and used to query >600,000 compounds from the GlaxoSmithKline collection for mdm2 inhibitors. (Journal of Biomolecular Screening 2007:1050-1058)


Biochemistry | 2008

Biochemical Characterization of Human Prolyl Hydroxylase Domain Protein 2 Variants Associated with Erythrocytosis

Melissa B. Pappalardi; John D. Martin; Yong Jiang; Matthew C. Burns; Huizhen Zhao; Thau Ho; Sharon Sweitzer; Leng Lor; Benjamin J. Schwartz; Kevin J. Duffy; Richard R. Gontarek; Peter J. Tummino; Robert A. Copeland; Lusong Luo

Prolyl hydroxylase domain proteins (PHD isozymes 1-3) regulate levels of the alpha-subunit of the hypoxia inducible factor (HIF) through proline hydroxylation, earmarking HIFalpha for proteosome-mediated degradation. Under hypoxic conditions, HIF stabilization leads to enhanced transcription and regulation of a multitude of processes, including erythropoiesis. Herein, we examine the biochemical characterization of PHD2 variants, Arg371His and Pro317Arg, identified from patients with familial erythrocytosis. The variants display differential effects on catalytic rate and substrate binding, implying that partial inhibition or selective inhibition with regard to HIFalpha isoforms of PHD2 could result in the phenotype displayed by patients with familial erythrocytosis.


Journal of Biomolecular Screening | 2011

Assay Development and High-Throughput Screening of Small Molecular c-Abl Kinase Activators

Josh Cottom; Glenn A. Hofmann; Brett Siegfried; Jingsong Yang; Hong Zhang; Tracey Yi; Thau Ho; Chad Quinn; Da-Yuan Wang; Kyung Johanson; Robert S. Ames; Hu Li

A 2-step kinase assay was developed and used in a high-throughput screen (HTS) of more than 1 million compounds in an effort to identify c-Abl tyrosine kinase activators. This assay employed a 2-step phosphorylation reaction: in the first step, purified recombinant c-Abl was activated by incubating with compound in the presence of adenosine triphosphate (ATP). In the second step, the TAMRA-labeled IMAP Abltide substrate was added to allow phosphorylation of the substrate to occur. The assay was calibrated such that inactive c-Abl protein was activated by ATP alone to a degree that it not only demonstrated a measurable c-Abl activity but also maintained a robust assay window for screening. The screen resulted in 8624 primary hits with >30% response. Further analysis showed that 1024 had EC50 <10 µM with a max % response of >50%. These hits were structurally and chemically diverse with possibly different mechanisms for activating c-Abl. In addition, selective hits were shown to be cell permeable and were able to induce c-Abl activation as determined by In-Cell Western (ICW) analysis of HEK-MSRII cells transduced with BacMam virus expressing full-length c-Abl.


Assay and Drug Development Technologies | 2013

Development of a High-Throughput Screen to Detect Inhibitors of TRPS1 Sumoylation

Martin Brandt; Lawrence M. Szewczuk; Hong Zhang; Xuan Hong; Patricia M. McCormick; Tia S. Lewis; Taylor I. Graham; Sunny T. Hung; Amber D. Harper-Jones; John J. Kerrigan; Da-Yuan Wang; Edward Dul; Wangfang Hou; Thau Ho; Thomas D. Meek; Mui H. Cheung; Kyung Johanson; Christopher S. Jones; Benjamin J. Schwartz; Sanjay Kumar; Allen Oliff; Robert B. Kirkpatrick

Small ubiquitin-like modifier (SUMO) belongs to the family of ubiquitin-like proteins (Ubls) that can be reversibly conjugated to target-specific lysines on substrate proteins. Although covalently sumoylated products are readily detectible in gel-based assays, there has been little progress toward the development of robust quantitative sumoylation assay formats for the evaluation of large compound libraries. In an effort to identify inhibitors of ubiquitin carrier protein 9 (Ubc9)-dependent sumoylation, a high-throughput fluorescence polarization assay was developed, which allows detection of Lys-1201 sumoylation, corresponding to the major site of functional sumoylation within the transcriptional repressor trichorhino-phalangeal syndrome type I protein (TRPS1). A minimal hexapeptide substrate peptide, TMR-VVK₁₂₀₁TEK, was used in this assay format to afford high-throughput screening of the GlaxoSmithKline diversity compound collection. A total of 728 hits were confirmed but no specific noncovalent inhibitors of Ubc9 dependent trans-sumoylation were found. However, several diaminopyrimidine compounds were identified as inhibitors in the assay with IC₅₀ values of 12.5 μM. These were further characterized to be competent substrates which were subject to sumoylation by SUMO-Ubc9 and which were competitive with the sumoylation of the TRPS1 peptide substrates.


Protein Expression and Purification | 2010

Baculovirus production of fully-active phosphoinositide 3-kinase alpha as a p85α–p110α fusion for X-ray crystallographic analysis with ATP competitive enzyme inhibitors☆

Robert H. Sinnamon; Patrick McDevitt; Beth Pietrak; Vaughan R. Leydon; Yu Xue; Ruth Lehr; Hongwei Qi; Matthew C. Burns; Patricia A. Elkins; Paris Ward; Giorgia Vincentini; Donald T. Fisher; Maggie Grimes; Martin Brandt; Kurt R. Auger; Thau Ho; Kyung Johanson; Christopher S. Jones; Benjamin Schwartz; Thomas D. Sweitzer; Robert B. Kirkpatrick

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.

Collaboration


Dive into the Thau Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge