Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Themistoklis P. Sapsis is active.

Publication


Featured researches published by Themistoklis P. Sapsis.


Chaos | 2011

Lagrangian coherent structures and the smallest finite-time Lyapunov exponent

George Haller; Themistoklis P. Sapsis

We point out that local minimizing curves, or troughs, of the smallest finite-time Lyapunov exponent (FTLE) field computed over a time interval [t(0), t] and graphed over trajectory positions at time t mark attracting Lagrangian coherent structures (LCSs) at t. For two-dimensional area-preserving flows, we conclude that computing the largest forward-time FTLE field by itself is sufficient for locating both repelling LCSs at t(0) and attracting LCSs at t. We illustrate our results on analytic examples, as well as on a two-dimensional experimental velocity field measured near a swimming jellyfish.


Journal of the Atmospheric Sciences | 2009

Inertial Particle Dynamics in a Hurricane

Themistoklis P. Sapsis; George Haller

Abstract The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold. These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry that cannot be compared directly with Eulerian features.


Journal of Vibration and Acoustics | 2012

Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments

Themistoklis P. Sapsis; D. Dane Quinn; Alexander F. Vakakis; Lawrence A. Bergman

can have on the dynamics of a primary linear structure. These local attachments can be designed to act as nonlinear energy sinks (NESs) of shock-induced energy by engaging in isolated resonance captures or resonance capture cascades with structural modes. After the introduction of the NESs, the effective stiffness and damping properties of the structure are characterized through appropriate measures, developed within this work, which are based on the energy contained within the modes of the primary structure. Three types of NESs are introduced in this work, and their effects on the stiffness and damping properties of the linear structure are studied via (local) instantaneous and (global) weightedaveraged effective stiffness and damping measures. Three different applications are considered and show that these attachments can drastically increase the effective damping properties of a two-degrees-of-freedom system and, to a lesser degree, the stiffening properties as well. An interesting finding reported herein is that the essentially nonlinear attachments can introduce significant nonlinear coupling between distinct structural modes, thus paving the way for nonlinear energy redistribution between structural modes. This feature, coupled with the well-established capacity of NESs to passively absorb and locally dissipate shock energy, can be used to create effective passive mitigation designs of structures under impulsive loads. [DOI: 10.1115/1.4005005]


Proceedings of the National Academy of Sciences of the United States of America | 2013

Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems

Themistoklis P. Sapsis; Andrew J. Majda

A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.


Chaos | 2010

Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows.

Themistoklis P. Sapsis; George Haller

We derive an analytic condition that predicts the exact location of inertial particle clustering in three-dimensional steady or two-dimensional time-periodic flows. The particles turn out to cluster on attracting inertial Lagrangian coherent structures that are smooth deformations of invariant tori. We illustrate our results on three-dimensional steady flows, including the Hills spherical vortex and the Arnold-Beltrami-Childress flow, as well as on a two-dimensional time and space periodic flow that models a meandering jet in a channel.


Physics of Fluids | 2008

Instabilities in the dynamics of neutrally buoyant particles

Themistoklis P. Sapsis; George Haller

The asymptotic dynamics of finite-size particles is governed by a slow manifold that is globally attracting for sufficiently small Stokes numbers. For neutrally buoyant particles (suspensions), the slow dynamics coincide with that of infinitesimally small particles, therefore the suspension dynamics should synchronize with Lagrangian particle motions. Paradoxically, recent studies observe a scattering of suspension dynamics along Lagrangian particle motions. Here we resolve this paradox by proving that despite its global attractivity, the slow manifold has domains that repel nearby passing trajectories. We derive an explicit analytic expression for these unstable domains; we also obtain a necessary condition for the global attractivity of the slow manifold. We illustrate our results on neutrally buoyant particle motion in a two-dimensional model of vortex shedding behind a cylinder in crossflow and on the three-dimensional steady Arnold–Beltrami–Childress flow.


Journal of Computational Physics | 2013

Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows

Mattheus P. Ueckermann; Pierre F. J. Lermusiaux; Themistoklis P. Sapsis

The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.


Physica D: Nonlinear Phenomena | 2014

Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model

William Cousins; Themistoklis P. Sapsis

Massachusetts Institute of Technology (Naval Engineering Education Center (NEEC), Grant 3002883706)


Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 2013

Attractor local dimensionality, nonlinear energy transfers and finite-time instabilities in unstable dynamical systems with applications to two-dimensional fluid flows

Themistoklis P. Sapsis

We examine the geometry of the finite-dimensional attractor associated with fluid flows described by Navier–Stokes equations and relate its nonlinear dimensionality to energy exchanges between dynamical components (modes) of the flow. Specifically, we use a stochastic framework based on the dynamically orthogonal equations to perform efficient order-reduction and describe the stochastic attractor in the reduced-order phase space in terms of the associated probability measure. We introduce the notion of local fractal dimensionality to describe the geometry of the attractor and we establish a connection with the number of positive finite-time Lyapunov exponents. Subsequently, we illustrate in specific fluid flows that the low dimensionality of the stochastic attractor is caused by the synergistic activity of linearly unstable and stable modes as well as the action of the quadratic terms. In particular, we illustrate the connection of the low-dimensionality of the attractor with the circulation of energy: (i) from the mean flow to the unstable modes (due to their linearly unstable character), (ii) from the unstable modes to the stable ones (due to a nonlinear energy transfer mechanism) and (iii) from the stable modes back to the mean (due to the linearly stable character of these modes).


Proceedings of the National Academy of Sciences of the United States of America | 2014

Blended particle filters for large-dimensional chaotic dynamical systems

Andrew J. Majda; Di Qi; Themistoklis P. Sapsis

Significance Combining large uncertain computational models with big noisy datasets is a formidable problem throughout science and engineering. These are especially difficult issues when real-time state estimation and prediction are needed such as, for example, in weather forecasting. Thus, a major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. New blended particle filters are developed in this paper. These algorithms exploit the physical structure of turbulent dynamical systems and capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of the phase space. A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below.

Collaboration


Dive into the Themistoklis P. Sapsis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mustafa A. Mohamad

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander H. Slocum

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Kyul Joo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jocelyn M. Kluger

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Will Cousins

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Majda

Courant Institute of Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mohammad Farazmand

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Oleg Gendelman

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge