Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theo J.C. van Berkel is active.

Publication


Featured researches published by Theo J.C. van Berkel.


Clinical Microbiology Reviews | 2003

Receptors, Mediators, and Mechanisms Involved in Bacterial Sepsis and Septic Shock

Edwin S. Van Amersfoort; Theo J.C. van Berkel; Johan Kuiper

SUMMARY Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.


Journal of Neuroimmunology | 1996

The influence of cytokines on the integrity of the blood-brain barrier in vitro

Helga E. de Vries; Margret C.M. Blom-Roosemalen; Marijke van Oosten; Albert G. de Boer; Theo J.C. van Berkel; Douwe D. Breimer; Johan Kuiper

The effects of the cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6 on the permeability of monolayers of rat cerebral endothelial cells (RCEC) were investigated to assess potential changes in the integrity of the blood-brain barrier (BBB). RCEC were cultured to tight monolayers with a trans endothelial electrical resistance (TEER) of 100-150 ohm . cm2 on polycarbonate filters. Exposure of the RCEC to TNF-alpha, IL-1 beta and IL-6 induced a decline in the TEER, which could be completely abolished by 1 muM of indomethacin, a cyclooxygenase inhibitor. In addition, the effect of IL-1 beta on TEER across monolayers of RCEC could be completely inhibited by IL-1 receptor antagonist. In conclusion, cytokines induce a disruption of the BBB in vitro. In this process, cyclooxygenase activation within the endothelial cells seems to play a key role.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues

Miranda Van Eck; I. Sophie T. Bos; Wolfgang E. Kaminski; Evelyn Orsó; Gregor Rothe; Jaap Twisk; Alfred Böttcher; Edwin S. Van Amersfoort; Trudy A. Christiansen-Weber; Wai-Ping Fung-Leung; Theo J.C. van Berkel; Gerd Schmitz

The ATP-binding cassette transporter 1 (ABCA1) has recently been identified as a key regulator of high-density lipoprotein (HDL) metabolism, which is defective in familial HDL-deficiency syndromes such as Tangier disease. ABCA1 functions as a facilitator of cellular cholesterol and phospholipid efflux, and its expression is induced during cholesterol uptake in macrophages. To assess the role of macrophage ABCA1 in atherosclerosis, we generated low-density lipoprotein (LDL) receptor knockout (LDLr−/−) mice that are selectively deficient in leukocyte ABCA1 (ABCA1−/−) by using bone marrow transfer (ABCA1−/− → LDLr−/−). Here we demonstrate that ABCA1−/− → LDLr−/− chimeras develop significantly larger and more advanced atherosclerotic lesions compared with chimeric LDLr−/− mice with functional ABCA1 in hematopoietic cells. Targeted disruption of leukocyte ABCA1 function did not affect plasma HDL cholesterol levels. The amount of macrophages in liver and spleen and peripheral blood leukocyte counts is increased in the ABCA1−/− → LDLr−/− chimeras. Our results provide evidence that leukocyte ABCA1 plays a critical role in the protection against atherosclerosis, and we identify ABCA1 as a leukocyte factor that controls the recruitment of inflammatory cells.


Journal of the American Chemical Society | 2014

Multivalent N‑Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing

Jayaprakash K. Nair; Jennifer L. S. Willoughby; Amy Chan; Klaus Charisse; Md. Rowshon Alam; Qianfan Wang; Menno Hoekstra; Pachamuthu Kandasamy; Alexander V. Kel’in; Nate Taneja; Jonathan O′Shea; Sarfraz Shaikh; Ligang Zhang; Ronald J. van der Sluis; Michael E. Jung; Akin Akinc; Renta Hutabarat; Satya Kuchimanchi; Kevin Fitzgerald; Tracy Zimmermann; Theo J.C. van Berkel; Martin Maier; Kallanthottathil G. Rajeev; Muthiah Manoharan

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


American Journal of Pathology | 2005

Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes.

Rob J. Dekker; Johannes V. van Thienen; Jakub Rohlena; Saskia C.A. de Jager; Yvonne W. Elderkamp; Jurgen Seppen; Carlie J.M. de Vries; Erik A.L. Biessen; Theo J.C. van Berkel; Hans Pannekoek; Anton J.G. Horrevoets

Lung Krüppel-like factor (LKLF/KLF2) is an endothelial transcription factor that is crucially involved in murine vasculogenesis and is specifically regulated by flow in vitro. We now show a relation to local flow variations in the adult human vasculature: decreased LKLF expression was noted at the aorta bifurcations to the iliac and carotid arteries, coinciding with neointima formation. The direct involvement of shear stress in the in vivo expression of LKLF was determined independently by in situ hybridization and laser microbeam microdissection/reverse transcriptase-polymerase chain reaction in a murine carotid artery collar model, in which a 4- to 30-fold induction of LKLF occurred at the high-shear sites. Dissection of the biomechanics of LKLF regulation in vitro demonstrated that steady flow and pulsatile flow induced basal LKLF expression 15- and 36-fold at shear stresses greater than approximately 5 dyne/cm2, whereas cyclic stretch had no effect. Prolonged LKLF induction in the absence of flow changed the expression of angiotensin-converting enzyme, endothelin-1, adrenomedullin, and endothelial nitric oxide synthase to levels similar to those observed under prolonged flow. LKLF repression by siRNA suppressed the flow response of endothelin-1, adrenomedullin, and endothelial nitric oxide synthase (P < 0.05). Thus, we demonstrate that endothelial LKLF is regulated by flow in vivo and is a transcriptional regulator of several endothelial genes that control vascular tone in response to flow.


The New England Journal of Medicine | 2011

Genetic variant of the scavenger receptor BI in humans

Menno Vergeer; Suzanne J.A. Korporaal; Remco Franssen; Illiana Meurs; Ruud Out; G. Kees Hovingh; Menno Hoekstra; Jeroen A. Sierts; Geesje M. Dallinga-Thie; Mohammad Mahdi Motazacker; Adriaan G. Holleboom; Theo J.C. van Berkel; John J. P. Kastelein; Miranda Van Eck; Jan Albert Kuivenhoven

BACKGROUND In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice. It is unclear what role SR-BI plays in human metabolism. METHODS We sequenced the gene encoding SR-BI in persons with elevated HDL cholesterol levels and identified a family with a new missense mutation (P297S). The functional effects of the P297S mutation on HDL binding, cellular cholesterol uptake and efflux, atherosclerosis, platelet function, and adrenal function were studied. RESULTS Cholesterol uptake from HDL by primary murine hepatocytes that expressed mutant SR-BI was reduced to half of that of hepatocytes expressing wild-type SR-BI. Carriers of the P297S mutation had increased HDL cholesterol levels (70.4 mg per deciliter [1.8 mmol per liter], vs. 53.4 mg per deciliter [1.4 mmol per liter] in noncarriers; P<0.001) and a reduced capacity for efflux of cholesterol from macrophages, but the carotid artery intima-media thickness was similar in carriers and in family noncarriers. Platelets from carriers had increased unesterified cholesterol content and impaired function. In carriers, adrenal steroidogenesis was attenuated, as evidenced by decreased urinary excretion of sterol metabolites, a decreased response to corticotropin stimulation, and symptoms of diminished adrenal function. CONCLUSIONS We identified a family with a functional mutation in SR-BI. The mutation carriers had increased HDL cholesterol levels and a reduction in cholesterol efflux from macrophages but no significant increase in atherosclerosis. Reduced SR-BI function was associated with altered platelet function and decreased adrenal steroidogenesis. (Funded by the European Community and others.).


Circulation | 2007

Perivascular Mast Cells Promote Atherogenesis and Induce Plaque Destabilization in Apolipoprotein E–Deficient Mice

Ilize Bot; Saskia C.A. de Jager; Aima Zernecke; Ken A. Lindstedt; Theo J.C. van Berkel; Christian Weber; Erik A.L. Biessen

Background— Mast cells are major effector cells in allergy and host defense responses. Their increased number and state of activation in perivascular tissue during atherosclerosis may point to a role in cardiovascular disorders. In the present study, we investigated the contribution of perivascular mast cells to atherogenesis and plaque stability in apolipoprotein E–deficient mice. Methods and Results— We show here that episodes of systemic mast cell activation during plaque progression in mice leads to robust plaque expansion. Targeted activation of perivascular mast cells in advanced plaques sharply increases the incidence of intraplaque hemorrhage, macrophage apoptosis, vascular leakage, and CXCR2/VLA-4–mediated recruitment of leukocytes to the plaque. Importantly, treatment with the mast cell stabilizer cromolyn does prevent all the adverse phenomena elicited by mast cell activation. Conclusions— This is the first study to demonstrate that mast cells play a crucial role in plaque progression and destabilization in vivo. We propose that mast cell stabilization could be a new therapeutic approach to the prevention of acute coronary syndromes.


Pharmacological Reviews | 2003

Interleukins in Atherosclerosis: Molecular Pathways and Therapeutic Potential

Jan H. von der Thüsen; Johan Kuiper; Theo J.C. van Berkel; Erik A.L. Biessen

Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.


Circulation | 2001

Induction of Rapid Atherogenesis by Perivascular Carotid Collar Placement in Apolipoprotein E–Deficient and Low-Density Lipoprotein Receptor–Deficient Mice

Jan H. von der Thüsen; Theo J.C. van Berkel; Erik A.L. Biessen

Background —Perivascular collar placement has been used as a means for localized atherosclerosis induction in a variety of experimental animal species. In mice, however, atherosclerosis-like lesions have thus far not been obtained by this method. The aim of this study was the development of a mouse model of rapid, site-controlled atherogenesis. Methods and Results —Silastic collars were placed around the carotid arteries of apolipoprotein E–deficient (apoE−/−) and LDL receptor–deficient (LDLr−/−) mice. The development of collar-induced lesions was found to occur predominantly in the area proximal to the collar and to be dependent on a high-cholesterol diet. Lesions were evident in apoE−/− mice after 3 weeks and in LDLr−/− mice after 6 weeks and were overtly atherosclerotic in appearance. Lumen stenosis reached 85% in apoE−/− mice and 61% in LDLr−/− mice 6 weeks after collar insertion. Expression levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were increased both proximal and distal to the collar, whereas endothelial nitric oxide synthase expression was downregulated at the proximal site. Conclusions —We propose that this model of collar-induced acceleration of carotid atherogenesis is of hemodynamic cause. It may serve as a substrate for sequential mechanistic studies concerned with the underlying cause and pathogenesis of atherosclerosis. The rapidity of lesion development will also aid the efficient screening of new potentially antiatherogenic chemical entities and the evaluation of therapies with limited duration of effectiveness, such as adenoviral gene therapy.


Journal of Biological Chemistry | 2003

Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver

Miranda Van Eck; Jaap Twisk; Menno Hoekstra; Brechje T. Van Rij; Christian A.C. Lans; I. Sophie T. Bos; J. Kar Kruijt; Folkert Kuipers; Theo J.C. van Berkel

Scavenger receptor class B, type I (SRBI) is a key regulator of high density lipoprotein (HDL) metabolism. It facilitates the efflux of cholesterol from cells in peripheral tissues to HDL and mediates the selective uptake of cholesteryl esters from HDL in the liver. We investigated the effects of SRBI deficiency in the arterial wall and in the liver using SRBI-deficient mice and wild-type littermates fed a Western-type diet. The SRBI-deficient mice showed massive accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the liver. Strikingly, SRBI deficiency did not alter hepatic cholesterol (ester) content nor did it affect the expression of key regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the low density lipoprotein receptor, and cholesterol 7α-hydroxylase. However, a ∼40% reduction in biliary cholesterol content was observed, and the expression of ABCG8 and ABCG5, ATP half-transporters implicated in the transport of sterols from the liver to the bile, was attenuated by 70 and 35%, respectively. In contrast to the situation in the liver, SRBI deficiency did result in lipid deposition in the aorta and atherosclerosis. Vascular mRNA analysis showed increased expression of inflammatory markers as well as of genes involved in cellular cholesterol homeostasis. Our data show that, although hepatic cholesterol homeostasis is maintained upon feeding a Western-type diet, SRBI deficiency is associated with de-regulation of cholesterol homeostasis in the arterial wall that results in an increased susceptibility to atherosclerosis.

Collaboration


Dive into the Theo J.C. van Berkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miranda Van Eck

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick C. N. Rensen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge