Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theo Kofidis is active.

Publication


Featured researches published by Theo Kofidis.


Nature | 2004

Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium

Leora B. Balsam; Amy J. Wagers; Theo Kofidis; Irving L. Weissman; Robert C. Robbins

Under conditions of tissue injury, myocardial replication and regeneration have been reported. A growing number of investigators have implicated adult bone marrow (BM) in this process, suggesting that marrow serves as a reservoir for cardiac precursor cells. It remains unclear which BM cell(s) can contribute to myocardium, and whether they do so by transdifferentiation or cell fusion. Here, we studied the ability of c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1lo Lin- Sca-1+ long-term reconstituting haematopoietic stem cells to regenerate myocardium in an infarct model. Cells were isolated from transgenic mice expressing green fluorescent protein (GFP) and injected directly into ischaemic myocardium of wild-type mice. Abundant GFP+ cells were detected in the myocardium after 10 days, but by 30 days, few cells were detectable. These GFP+ cells did not express cardiac tissue-specific markers, but rather, most of them expressed the haematopoietic marker CD45 and myeloid marker Gr-1. We also studied the role of circulating cells in the repair of ischaemic myocardium using GFP+–GFP- parabiotic mice. Again, we found no evidence of myocardial regeneration from blood-borne partner-derived cells. Our data suggest that even in the microenvironment of the injured heart, c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1lo Lin- Sca-1+ long-term reconstituting haematopoietic stem cells adopt only traditional haematopoietic fates.


Circulation | 2005

Embryonic Stem Cell Immunogenicity Increases Upon Differentiation After Transplantation Into Ischemic Myocardium

Rutger-Jan Swijnenburg; Masashi Tanaka; Hannes Vogel; Jeanette Baker; Theo Kofidis; Feny Gunawan; Darren R. Lebl; Anthony D. Caffarelli; Jorg de Bruin; Eugenia V. Fedoseyeva; Robert C. Robbins

Background—We investigated whether differentiation of embryonic stem cells (ESCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection. Methods and Results—In one series, 129/SvJ-derived mouse ESCs (ES-D3 line) were transplanted by direct myocardial injection (1×106 cells) into murine hearts of both allogeneic (BALB/c, n=20) and syngeneic (129/SvJ, n=12) recipients after left anterior artery ligation. Hearts were procured at 1, 2, 4, and 8 weeks after ESC transplantation and analyzed by immunohistochemistry to assess immune cell infiltration (CD3, CD4, CD8, B220, CD11c, Mac-1, and Gr-1) and ESC differentiation (hematoxylin and eosin). In a second series (allogeneic n=5, sham n=3), ESC transplantation was performed similarly; however after 2 weeks, left anterior descending artery-ligated and ESC-injected hearts were heterotopically transplanted into naive BALB/c recipients. After an additional 2 weeks, donor hearts were procured and analyzed by immunohistochemistry. In the first series, the size of all ESC grafts remained stable and there was no evidence of ESC differentiation 2 weeks after transplantation; however, after 4 weeks, both allogeneic and syngeneic ESC grafts showed the presence of teratoma. By 8 weeks, surviving ESCs could be detected in the syngeneic but not in the allogeneic group. Mild inflammatory cellular infiltrates were found in allogeneic recipients at 1 and 2 weeks after transplantation, progressing into vigorous infiltration at 4 and 8 weeks. The second series demonstrated similar vigorous infiltration of immune cells as early as 2 weeks after heterotopic transplantation. Conclusion—In vivo differentiated ESCs elicit an accelerated immune response as compared with undifferentiated ESCs. These data imply that clinical transplantation of allogeneic ESCs or ESC derivatives for treatment of cardiac failure might require immunosuppressive therapy.


Circulation | 2005

Novel Injectable Bioartificial Tissue Facilitates Targeted, Less Invasive, Large-Scale Tissue Restoration on the Beating Heart After Myocardial Injury

Theo Kofidis; Darren R. Lebl; Eliana C. Martinez; Grant Hoyt; Masashi Tanaka; Robert C. Robbins

Background—Implantation of bioartificial patches distorts myocardial geometry, and functional improvement of the recipient heart is usually attributed to reactive angiogenesis around the graft. With the liquid bioartificial tissue compound used in this study, we achieved targeted large-scale support of the infarcted left ventricular wall and improvement of heart function. Methods and Results—A liquid compound consisting of growth factor-free Matrigel and 106 green fluorescent protein (GFP)-positive mouse (129sv) embryonic stem cells (ESCs) was generated and injected into the area of ischemia after ligation of the left anterior descending artery in BALB/c mice (group I). Left anterior descending artery-ligated mice (group II) and mice with Matrigel (group III) or ESC treatment alone (group IV) were used as the control groups (n=5 in all groups). The hearts were harvested for histology 2 weeks later after echocardiographic assessment with a 15-MHz probe. The liquid injectable tissue solidified at body temperature and retained the geometry of the infarcted lateral wall. Immunofluorescence stains revealed voluminous GFP grafts. The quality of restoration (graft/infarct area ratio) was 45.5±10.8% in group I and 29.1±6.7% in group IV (P=0.034). ESCs expressed connexin 43 at intercellular contact sites. The mice treated with the compound had a superior heart function compared with the controls (P<0.0001 by ANOVA/Bonferroni test; group I: 27.1±5.4, group II:11.9±2.4, group III:16.2±2.8, group IV: 19.1±2.7). Conclusions—Injectable bioartificial tissue restores the heart’s geometry and function in a targeted and nondistorting fashion. This new method paves the way for novel interventional approaches to myocardial repair, using both stem cells and matrices.


Circulation | 2006

Collagen Matrices Enhance Survival of Transplanted Cardiomyoblasts and Contribute to Functional Improvement of Ischemic Rat Hearts

Ingo Kutschka; Ian Y. Chen; Theo Kofidis; Takayasu Arai; Georges von Degenfeld; Ahmad Y. Sheikh; Stephen L. Hendry; Jeremy Pearl; Grant Hoyt; Ramachadra Sista; Phillip C. Yang; Helen M. Blau; Sanjiv S. Gambhir; Robert C. Robbins

Background— Cardiac cell transplantation is limited by poor graft viability. We aimed to enhance the survival of transplanted cardiomyoblasts using growth factor-supplemented collagen matrices. Methods and Results— H9c2 cardiomyoblasts were lentivirally transduced to express firefly luciferase and green fluorescent protein (GFP). Lewis rats underwent ligation of the left anterior descending artery (LAD) ligation to induce an anterior wall myocardial infarction. Hearts (n=9/group) were harvested and restored ex vivo with 1×106 genetically labeled H9c2 cells either in (1) saline-suspension, or seeded onto (2) collagen-matrix (Gelfoam [GF];), (3) GF/Matrigel (GF/MG), (4) GF/MG/VEGF (10 &mgr;g/mL), or (5) GF/MG/FGF (10 &mgr;g/mL). Hearts were then abdominally transplanted into syngeneic recipients (working heart model). Controls (n=6/group) underwent infarction followed by GF implantation or saline injection. Cell survival was evaluated using optical bioluminescence on days 1, 5, 8, 14, and 28 postoperatively. At 4 weeks, fractional shortening and ejection fraction were determined using echocardiography and magnetic resonance imaging, respectively. Graft characteristics were assessed by immunohistology. Bioluminescence signals on days 5, 8, and 14 were higher for GF-based grafts compared with plain H9c2 injections (P<0.03). Signals were higher for GF/MG grafts compared with GF alone (P<0.02). GFP-positive, spindle-shaped H9c2 cells were found integrated in the infarct border zones at day 28. Left ventricular (LV) function of hearts implanted with collagen-based grafts was better compared with controls (P<0.05). Vascular endothelial growth factor or fibroblast growth factor did not further improve graft survival or heart function. Conclusions— Collagen matrices enhance early survival of H9c2 cardiomyoblasts after transplantation into ischemic hearts and lead to improved LV function. Further optimization of the graft design should make restoration of large myocardial infarctions by tissue engineering approaches effective.


The Journal of Thoracic and Cardiovascular Surgery | 2003

Methylene blue: The drug of choice for catecholamine- refractory vasoplegia after cardiopulmonary bypass?

Rainer G. Leyh; Theo Kofidis; Martin Strüber; Stefan Fischer; Karsten Knobloch; Bjoern Wachsmann; Christian Hagl; Andre Simon; Axel Haverich

OBJECTIVES Vasoplegia is a frequent complication after cardiopulmonary bypass that often requires the application of norepinephrine. In a number of cases, however, vasoplegia is refractory to norepinephrine. The guanylate cyclase inhibitor methylene blue could be an attractive treatment alternative in such cases. This study examines the results of methylene blue therapy for norepinephrine-refractory vasoplegia after cardiopulmonary bypass. METHODS A total of 54 patients with norepinephrine-refractory vasoplegia after cardiopulmonary bypass were treated with methylene blue (2 mg/kg) administered intravenously through a period of 20 minutes. The effects on hemodynamics, norepinephrine dosage, and clinical outcome were evaluated. RESULTS Three patients (5.6%) died during the hospital stay. A clinically relevant increase in systemic vascular resistance and a decrease in norepinephrine dosage were observed in 51 patients within 1 hour after methylene blue infusion. Four patients (7.4%) had no response to methylene blue. No adverse effects related to methylene blue were observed. CONCLUSIONS A single dose of methylene blue seems to be a potent approach to norepinephrine-refractory vasoplegia after cardiopulmonary bypass for most patients, with no obvious side effects. Guanylate cyclase inhibitors could be a novel class of agents for the treatment of norepinephrine-refractory vasoplegia after cardiopulmonary bypass. A controlled clinical trial is now needed to evaluate the role of methylene blue in this situation.


Magnetic Resonance in Medicine | 2006

Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t

Takayasu Arai; Theo Kofidis; Jeff W. M. Bulte; Jorg de Bruin; Ross D. Venook; Gerald J. Berry; Michael V. McConnell; Thomas Quertermous; Robert C. Robbins; Phillip C. Yang

Cell therapy has demonstrated the potential to restore injured myocardium. A reliable in vivo imaging method to localize transplanted cells and monitor their restorative effects will enable a systematic investigation of this therapeutic modality. The dual MRI capability of imaging both magnetically labeled mouse embryonic stem cells (mESC) and their restorative effects on cardiac function in a murine model of acute myocardial infarction is demonstrated. Serial in vivo MR detection of transplanted mESC and monitoring of the mESC‐treated myocardium was conducted over a 4‐week period using a 1.5 T clinical scanner. During the 4‐week duration, the mESC‐treated myocardium demonstrated sustained improvement of the left ventricular (LV) ejection fraction and conservation of LV mass. Furthermore, no significant difference of their restorative effects on the cardiac function was created by the magnetic labeling of mESC. Thus, in vivo MRI enables simultaneous detection of transplanted mESC and their therapeutic effect on the injured myocardium. Magn Reson Med 2006.


Circulation | 2005

Stimulation of Paracrine Pathways With Growth Factors Enhances Embryonic Stem Cell Engraftment and Host-Specific Differentiation in the Heart After Ischemic Myocardial Injury

Theo Kofidis; Jorg de Bruin; Toshiyuki Yamane; Masashi Tanaka; Darren R. Lebl; Rutger-Jan Swijnenburg; Irving L. Weissman; Robert C. Robbins

Background—Growth factors play an essential role in organogenesis. We examine the potential of growth factors to enhance cell engraftment and differentiation and to promote functional improvement after transfer of undifferentiated embryonic stem cells into the injured heart. Methods and Results—Green fluorescent protein (GFP)–positive embryonic stem cells derived from 129sv mice were injected into the ischemic area after left anterior descending artery ligation in allogenic (BALB/c) mice. Fifty nanograms of recombinant mouse vascular endothelial growth factor, fibroblast growth factor (FGF), and transforming growth factor (TGF) was added to the cell suspension. Separate control groups were formed in which only the growth factors were given. Echocardiography was performed 2 weeks later to evaluate heart function (fractional shortening [FS]), end-diastolic diameter, and left ventricular wall thickness). Hearts were harvested for histology (connexin 43, α-sarcomeric actin, CD3, CD11c, major histocompatability complex class I, hematoxylin-eosin). Degree of restoration (GFP-positive graft/infarct area ratio), expression of cardiac markers, host response, and tumorigenicity were evaluated. Cell transfer resulted in improved cardiac function. TGF-β led to better restorative effect and a stronger expression of connexin 43, α-sarcomeric actin, and major histocompatability complex class I. TGF-β and FGF retained left ventricular diameter. FS was better in the TGF-β, FGF, and embryonic stem cells–only group compared with left anterior descending artery–ligated controls. Growth factors with cells (TGF-β, FGF) resulted in higher FS and smaller end-diastolic diameter than growth factors alone. Conclusions—Growth factors can promote in vivo organ-specific differentiation of early embryonic stem cells and improve myocardial function after cell transfer into an area of ischemic lesion. TGF-β should be considered as an adjuvant for myocardial restoration with the use of embryonic stem cells.


Biomaterials | 2003

Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix

Theo Kofidis; Andre Lenz; Jan Boublik; Payam Akhyari; Björn Wachsmann; Knut Mueller-Stahl; Michael Hofmann; Axel Haverich

BACKGROUND The manufacture of full thickness three-dimensional myocardial grafts by means of tissue engineering is limited by the impeded cellular viability in unperfused in vitro systems. We introduce a novel concept of pulsatile tissue culture perfusion to promote ubiquitous cellular viability and metabolism. METHODS In a novel bioreactor we established pulsatile flow through the embedded three-dimensional tissue culture. Fibrin glue served as the ground matrix wherein neonatal rat cardiomyocytes were inoculated. Fluor-Deoxy-Glucose-Positron-Emission-Tomography (FDG-PET) and life/dead assays were employed for comparative studies of glucose uptake resp. cell viability. RESULTS A solid 8 mm thick structure resulted. Cellular viability significantly increased in the perfused chambers. We observed centripetal migration of the embedded cardiomyocytes to the site of the core vessel. However, cellular viability was high in the periphery of the tissue block too. FDG-PET revealed enhanced metabolic activity in perfused chambers. CONCLUSIONS The present concept is highly effective in enhancing cellular viability and metabolism in a three-dimensional tissue culture environment. It could be utilized for various co-culture systems and the generation of viable tissue grafts.


The Annals of Thoracic Surgery | 2003

In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation

Rainer G. Leyh; Mathias Wilhelmi; Philip Rebe; Stefan Fischer; Theo Kofidis; Axel Haverich; Heike Mertsching

BACKGROUND Approaches to in vivo repopulation of acellularized valve matrix constructs have been described recently. However, early calcification of acellularized matrices repopulated in vivo remains a major obstacle. We hypothesised that the matrix composition has a significant influence on the onset of early calcification. Therefore, we evaluated the calcification of acellularized allogenic ovine (AVMC) and xenogenic porcine (XVMC) valve matrix conduits in the pulmonary circulation in a sheep model. METHODS Porcine (n = 3) and sheep (n = 3) pulmonary valve conduits were acellularized by trypsin/EDTA digestion and then implanted into healthy sheep in pulmonary valve position using extracorporeal bypass support. Transthoracic echocardiography (TTE) was performed at 12 and 24 weeks after the implantation. The animals were sacrificed at week 24 or earlier when severe calcification of the valve conduit became evident by TTE. The valves were examined histologically and biochemically. RESULTS All AVMC revealed severe calcification after 12 weeks with focal endothelial cell clustering and no interstitial valve tissue reconstitution. In contrast, after 24 weeks XVMC indicated mild calcification on histologic examination (von Kossa staining) with histologic reconstitution of valve tissue and confluent endothelial surface coverage. Furthermore, immunohistologic analysis revealed reconstitution of surface endothelial cell monolayer (von Willebrand factor), and interstitial myofibroblasts (Vimentin/Desmin). CONCLUSIONS Porcine acellularized XVMC are resistant to early calcification during in vivo reseeding. Furthermore, XVMC are repopulated in vivo with valve-specific cell types within 24 weeks resembling native valve tissue.


Circulation | 2006

Adenoviral Human BCL-2 Transgene Expression Attenuates Early Donor Cell Death After Cardiomyoblast Transplantation Into Ischemic Rat Hearts

Ingo Kutschka; Theo Kofidis; Ian Y. Chen; Georges von Degenfeld; Monika Zwierzchoniewska; Grant Hoyt; Takayasu Arai; Darren R. Lebl; Stephen L. Hendry; Ahmad Y. Sheikh; David T. Cooke; Andrew J. Connolly; Helen M. Blau; Sanjiv S. Gambhir; Robert C. Robbins

Background— Cell transplantation for myocardial repair is limited by early cell death. Gene therapy with human Bcl-2 (hBcl-2) has been shown to attenuate apoptosis in the experimental setting. Therefore, we studied the potential benefit of hBcl-2 transgene expression on the survival of cardiomyoblast grafts in ischemic rat hearts. Methods and Results— H9c2 rat cardiomyoblasts were genetically modified to express both firefly luciferase and green fluorescent protein (mH9c2). The cells were then transduced with adenovirus carrying hBcl-2 (AdCMVhBcl-2/mH9c2). Lewis rats underwent ligation of the left anterior descending artery (LAD) to induce a sizable left ventricular (LV) infarct. Hearts were explanted and the infarcted region was restored using collagen matrix (CM) seeded with 1×106 mH9c2 cells (n=9) or AdCMVhBcl-2/mH9c2 cells (n=9). Control animals received CM alone (n=6) or no infarct (n=6). Restored hearts were transplanted into the abdomen of syngeneic recipients in a “working heart” model. Cell survival was evaluated using optical bioluminescence imaging on days 1, 5, 8, 14, and 28 after surgery. The left heart function was assessed 4 weeks postoperatively using echocardiography and magnetic resonance imaging. During 4 weeks after surgery, the optical imaging signal for the AdCMVhBCL2/mH9c2 group was significantly (P<0.05) higher than that of the mH9c2-control group. Both grafts led to better fractional shortening (AdCMVhBcl-2/mH9c2: 0.21±0.03; mH9c2: 0.21±0.04; control: 0.15±0.03; P=0.04) and ejection fraction (AdCMVhBcl-2/mH9c2: 47.0±6.2; mH9c2: 48.7±6.1; control: 34.3±6.0; P=0.02) compared with controls. Importantly, no malignant cells were found in postmortem histology. Conclusion— Transduction of mH9c2 cardiomyoblasts with AdCMVhBcl-2 increased graft survival in ischemic rat myocardium without causing malignancies. Both AdCMVhBcl-2/mH9c2 and mH9c2 grafts improved LV function.

Collaboration


Dive into the Theo Kofidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliana C. Martinez

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Uwe Klima

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Masashi Tanaka

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Chuen Neng Lee

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge